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ABSTRACT: Despite tremendous efforts in the past two years, our understanding of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus−host interactions, immune
response, virulence, transmission, and evolution is still very limited. This limitation calls for
further in-depth investigation. Computational studies have become an indispensable
component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their
efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the
mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be
revealed from individual experiments and was discovered by integrating genotyping of
massive viral sequences, biophysical modeling of protein−protein interactions, deep
mutational data, deep learning, and advanced mathematics. There exists a tsunami of
literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and
related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers
with a quick update about this literature, we present a comprehensive and systematic
methodology-centered review. Aspects such as molecular biophysics, bioinformatics,
cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking
for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
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1. INTRODUCTION

Since its first case was identified in Wuhan, China, in
December 2019, coronavirus disease 2019 (COVID-19),
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has expeditiously spread to as many as 226
countries and territories worldwide and led to over 433 million
confirmed cases and over 5.9 million fatalities as of February
2022. This pandemic has also brought a massive economic
recession globally. Countries all around the world have
implemented a variety of policies to tackle the COVID-19
pandemic (https://stip.oecd.org/covid/).
Many SARS-CoV-2 vaccines and monoclonal antibodies

(mAbs) have already obtained use authorization worldwide
(https://www.nytimes.com/interactive/2020/science/
coronavirus-vaccine-tracker.html). Additionally, the U.S. Food
and Drug Administration (FDA) has given emergency use
authorization to the oral SARS-CoV-2 Mpro inhibitor

PAXLOVID (PF-07321332) developed by Pfizer1,2 (https://
www.pfizer.com/news/press-release/press-release-detail/
pfizer-receives-us-fda-emergency-use-authorization-novel).
However, COVID-19 has a high infection rate, high
prevalence, long incubation period,3 asymptomatic trans-
mission,4−6 and potential seasonal patterns.7 SARS-CoV-2
keeps evolving into new infectious and antibody resistant
variants.8−10 Therefore, it is imperative to understand the viral
molecular mechanism,11 to track its genetic evolution,12 and to
continuously improve the efficacy of its antiviral drugs and
antibody therapies.
Belonging to the β-coronavirus genus and coronaviridae

family, SARS-CoV-2 is an unsegmented positive-sense single-
stranded RNA (+ssRNA) virus with a compact 29,903
nucleotide-long genome, and the diameter of each SARS-
CoV-2 virion is about 50−200 nm.14 In the first 20 years of the
21st century, β-coronaviruses have triggered three major
outbreaks of deadly pneumonia: SARS-CoV (2002), Middle
East respiratory syndrome coronavirus (MERS-CoV) (2012),
and SARS-CoV-2 (2019).15 Like SARS-CoV and MERS-CoV,
SARS-CoV-2 also causes respiratory infections, but at a much
higher infection rate.16,17 The complete genome of SARS-
CoV-2 comprises 15 open reading frames (ORFs), which
encodes 29 structural and nonstructural proteins (nsps),
illustrated in Figure 1. The 16 nonstructural proteins nsp1−
nsp16 get expressed by protein-coding genes ORF1a and
ORF1b, while four canonical 3′ structural proteins, spike (S),
envelope (E), membrane (M), and nucleocapsid (N) proteins,
as well as accessory factors, are encoded by another four major
ORFs, namely ORF2, ORF4, ORF5, and ORF9 (see Figure
1).18−21

The viral structure of SARS-CoV-2 can be found at the
upper right corner of Figure 2. This structure is formed by the
four structural proteins: the N protein holds the RNA genome,
the S protein helps the virus enter into the host cell, and the M
and E proteins define the shape of the viral envelope.22 The
studies on SARS-CoV-2 as well as previous SARS-CoV and
other coronaviruses have mostly identified the functions of
these structural proteins, nonstructural proteins, as well as
accessory proteins, which are summarized in Table 1. Their 3D
structures are also largely known from experiments or
predictions, which can be found in Figure 1.
With these SARS-CoV-2 proteins, the intracellular viral life

cycle of SARS-CoV-2 can be realized.23 This life cycle has six
stages as shown in Figure 2. The first stage is the entry of the
virus. SARS-CoV-2 enters the host cell via either endosomes or
plasma membrane fusion. In both ways, the S protein of SARS-
CoV-2 first attaches to the host cell-surface protein,
angiotensin converting enzyme 2 (ACE2). Then, the cell’s
protease, TMPRSS2, cuts and opens the S protein of the virus,
exposing a fusion peptide in the S2 subunit of S protein.24

After fusion, an endosome forms around the virion, separating
it from the rest of the host cell. The virion escapes when the
pH of the endosome drops or when cathepsin, a host cysteine
protease, cleaves it. The virion then releases its RNA into the
cell.25 After the RNA release, polyproteins pp1a and pp1ab are
translated. Notably, facilitated by viral papain-like protease
(PLpro), nsp1, nsp2, nsp3, and the amino terminus of nsp4
from the pp1a and pp1ab are released. Moreover, nsp5− nsp16
are also cleaved proteolytically by the main protease.26 The
next stage of the life cycle is the replication process, where
nsp12 (RdRp) and nsp13 (helicase) cooperate to perform the
replication of the viral genome. Stages IV and V are the
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translation of viral structural proteins and the virion assembly
process. In these stages, structural proteins S, E, and M are
translated by ribosomes and then present on the surface of the
endoplasmic reticulum (ER) and are transported from the ER
through the Golgi apparatus for the preparation of the virion
assembly. Meanwhile, multiple copies of the N protein package
the genomics RNA in the cytoplasm, which interacts with
another three structural proteins to direct the assembly of
virions. Finally, virions will be secreted from the infected cell
through exocytosis.
Since the initial outbreak of COVID-19, the raging

pandemic caused by SARS-CoV-2 has lasted over two years.
We do have many promising vaccines, but they might have side
effects and their full side effects, particularly, long-term side
effects, remain unknown. To make things worse, nearly 29208
unique mutations have been recorded for SARS-CoV-2 as
shown by Mutation Tracker (https://users.math.msu.edu/
users/weig/SARS-CoV-2_Mutation_Tracker.html). All of
these reveal the sad reality that our current understanding of
life science, virology, epidemiology, and medicine is severely
limited. Ultimately, the core of the challenges is the lack of
molecular mechanistic understanding of many aspects, namely
coronavirus RNA proofreading, virus−host cell interactions,
antibody−antigen interactions, protein−protein interactions,
protein−drug interactions, viral regulation of host cell
functions, including autophagocytosis and apoptosis, and
irregular host immune response behavior such as cytokine
storm and antibody-dependent enhancement. Molecular-level
experiments on SARS-CoV-2 are both expensive and time-
consuming and require heavy safety measures. Moreover,
disparities among reported experimental binding affinities can
be more than 100-fold for the receptor-binding domain (RBD)
of S protein binding to ACE2 or antibodies (see Table 1 of ref
77). All these complicated realities make the understanding of
the viral evolution and transmission mechanism one of the
most challenging tasks.
On the other hand, computational tools provide alternative

approaches in understanding viral evolution and transmission
with higher efficiency and lower costs. The increasing
computer power, the accumulation of molecular data, the
availability of artificial intelligence (AI) algorithms, and the
development of new mathematical tools have paved the road
for mechanistic understanding from molecular modeling,
simulations, and predictions. RBD residues 452 and 501
were predicted to “have very high chances to mutate into
significantly more infectious COVID-19 strains” in summer
202078 and were later confirmed in the prevailing SARS-CoV-2
variants Alpha, Beta, Gamma, Delta, Theta, Epsilon, Kappa,
Lambda, Mu, and Omicron. These predictions,78 achieved via
the integration of deep learning, biophysics, genotyping, and
advanced mathematics, are some of the most remarkable
events. Additionally, 3,696 possible RBD mutations were
classified into three categories with different appearance
likelihoods, namely, 1149 most likely, 1912 likely, and 625
unlikely.78 The predicted “most likely” partition successfully
contained all the newly observed RBD mutations, until the
recent appearance of S371L from Omicron BA.1. Most
remarkably, the mechanism governing SARS-CoV-2 evolution
and transmission, i.e., natural selection via mutation-
strengthened infectivity, was discovered in July 202078 when
there were only 89 RBD mutations with the highest observed
frequency of merely 50 globally.78 In April 2021, this
mechanism was confirmed beyond any doubt. By using

506,768 sequences isolated from patients, the authors
demonstrated that the predicted binding free energy (BFE)
changes of the 100 most observed RBD mutations out of 651
existing RBD mutations are all above the BFE change of −0.28
kcal/mol, indicating evolution favors variants having higher
infectivity.79 Moreover, using network-based modeling for drug
repurposing, Baricitinib was found to be a potential treatment
for COVID-19.80 These extraordinary results prove that
computational approaches spearhead the discovery of new
drugs and the mechanisms of SARS-CoV-2 evolution and
transmission.
Considering intensive research activities in molecular

modeling, simulations, and predictions of SARS-CoV-2, it
has become essentially impossible for experts and researchers
to go through the literature. It is important to present a
methodology-centered review to enable readers to grasp the
current status of SARS-CoV-2 modeling, simulations, and
predictions. In this review, the purpose is to provide a general
introduction of molecular-level methodologies for SARS-CoV-
2 modeling, simulations, and predictions from the aspects of
biophysics, mathematical approaches, and machine learning,
including deep learning, bioinformatics, and cheminformatics.
A wide variety of molecular-level methodologies is described,
followed by their applications to SARS-CoV-2. Comments and
discussions are presented. Future perspectives are provided in
the Concluding Remarks.

2. METHODS AND APPROACHES

2.1. Biophysics

The molecular modeling of viruses and their interactions with
host cells involves a variety of aspects of biology, biophysics,
biochemistry, virology, immunology, computer science, sta-
tistics, and mathematics. This section starts with thermody-
namics and electrostatics, followed by discussions on molecular
dynamics, normal-mode analysis, Monte Carlo methods,
molecular docking, and binding free energy analysis, and
ends with density-functional theory and quantum mechanics/
molecular mechanics methods.

2.1.1. Thermodynamics. Thermodynamics is a founda-
tion of biological science. The laws of thermodynamics are
basic principles of biology that govern biological, chemical, and
physical processes in all living organisms as well as viruses. The
relations among internal energy, Helmholtz free energy, Gibbs
free energy, enthalpy, entropy, temperature, volume, and
pressure underpin biophysics. The Gibbs−Helmholtz equation
describes the thermodynamics calculating changes in the Gibbs
energy of a system as a function of temperature. It is a
separable differential equation that is given as

i
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G T
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∂ Δ
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where ΔG is the change in Gibbs free energy, ΔH is the
enthalpy change, T is the absolute temperature, and P is the
constant pressure.
In the study of the N protein of SARS-CoV, it was shown

that the N protein shows its maximum conformational stability
near pH 9.0. The oligomer dissociation and protein unfolding
occur simultaneously.81 In the denaturation of the N protein
by chemicals, the Gibbs free energy change (ΔG) of unfolding
at temperature (T) is calculated by the solution of the Gibbs−
Helmholtz equation
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Figure 1. Genomics organization and proteins of SARS-CoV-2. Adapted with permission from ref 13. Copyright 2021 John Wiley and Sons.

Figure 2. Six stages of the SARS-CoV-2 life cycle. Stage I: Virus entry. I(a): Virus can enter the host cell via plasma membrane fusion. I(b): Virus
can enter the host cell via endosomes. Stage II: Translation of viral replication. Stage III: Replication. Here, nsp12 (RdRp) and nsp13 (helicase)
cooperate to perform the replication of the viral genome. Stage IV: Translation of viral structure proteins. Stage V: Virion assembly. Stage VI:
Release of a virus.
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where Tm is the transition temperature, ΔHm is the enthalpy of
unfolding at Tm, and ΔCp is the heat capacity change.
2.1.2. Electrostatic Modeling. In biomolecular studies,

electrostatic interactions are important due to their ubiquitous
existence in solvation, molecular recognition, molecular
interactions, protein−ligand binding, antibody−antigen bind-
ing, intramolecular interactions, etc. Electrostatics can be
computed using explicit solvent or implicit solvent models as
shown in Figure 3. However, including explicit solvent models

in free energy calculation is computationally expensive due to
their detailed description of solvent molecules. Using an
atomic description of the solute molecule, implicit solvent
models describe the solvent as a dielectric continuum.82−86 A
wide variety of two-scale implicit solvent models has been
developed for electrostatic analysis, including Poisson−
Boltzmann (PB),83,87 generalized Born (GB),88−91 polarized
continuum,92,93 and differential geometry-based models.94,95

GB models give an efficient approximation of PB models but
provide only heuristic estimates for electrostatic energies, while
PB methods offer more accurate methods for electrostatic
analysis.86,89,95−99

2.1.2.1. Generalized Born Model. The GB model is devised
to offer a relatively simple and computationally efficient
approach to calculate electrostatic solvation free energy.88−91

Under an appropriate parametrization for a given system, a GB
solver can achieve accuracy as a PB solver.100 The GB
approximation of electrostatic solvation free energy can be
given as
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where Ri is the effective Born radius of the ith atom, dij is the
distance between atoms i and j, ϵ1 is the dielectric constant of
the solute, ϵ2 is the dielectric constant of the solvent, qi is the
partial charge of atom i, β = ϵ1/ϵ2, α = 0.571412, and A is the
electrostatic size of the molecule. Additionally, the function f ij
is given as
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The effective Born radius Ri is calculated via a boundary
integral:
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where ∂Ω1 is the molecular surface, such as the solvent-
excluded surface, dS is the infinitesimal surface element vector,
ri represents the position of atom i, and r shows the position of
the infinitesimal surface.

2.1.2.2. Poisson−Boltzmann Model. As illustrated in Figure
3, the PB model describes a two-scale treatment of electro-
statics. The interior domain Ω1 contains the solute
biomolecule with fixed charges, and the exterior domain Ω2
contains the solvent and dissolved ions separated by the
interface Γ. While various surface models are available, the
most commonly used ones are the molecular surface or solvent
excluded surface. A biomolecule in domain Ω1 consists of a set
of atomic charges qk located at atomic centers rk for k = 1, ...,
Nc, with Nc as the total number of charges. On the other hand,
domain Ω2 contains the mobile ions, whose charge source
density is approximated by the Boltzmann distribution. The
linearized PB model is always applied:

qr r r r r( ) ( ) ( ) ( )
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∑ϕ κ ϕ δ−∇·ϵ ∇ + ϵ = −
= (6)

where ϕ(r) is the electrostatic potential, ϵ(r) is a dielectric
constant given by ϵ(r) = ϵ1 for r ∈ Ω1 and ϵ(r) = ϵ2 for r ∈ Ω2,
and κ is the inverse Debye length representing the ionic
effective length. Interface conditions are involved on ∂Ω1,
which are given as
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where ϕ1 and ϕ2 are the limit values when approaching the
interface from inside or outside the solute domain and n is the
outward unit normal vector on ∂Ω1. For the far-field boundary
condition of the PB model, lim|r|→∞ϕ(r) = 0 is implied.
Therefore, the electrostatic solvation free energy can be
calculated by

G q r r
1
2

( ( ) ( ))
k
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k k kPB
polar

1
0

c

∑ ϕ ϕΔ = −
= (8)

where ϕ0(rk) is the solution of the PB equation as if there were
no solvent−solute interface.
Due to their success in describing biomolecular systems, the

PB and GB models have attracted wide attention in both the
mathematical and biophysical communities.101−103 Meanwhile,
much effort has been given to the development of accurate,
efficient, reliable, and robust PB solvers. A large number of
methods have been proposed in the literature, including the
finite difference method (FDM),104 finite element method
(FEM),105 and and boundary element method (BEM).106 The
emblematic solvers in this category include Poisson−
Boltzmann surface area (PBSA),107,108 Delphi,109,110 adaptive
Poisson−Boltzmann solver (ABPS),97,111 matched interface

Figure 3. (a) Illustration of the PB model, in which the molecular
surface separates the computational domain into the solute region Ω1
and solvent region Ω2. (b) Electrostatic potential of the SARS-CoV-2
Mpro based on the PB model.
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and boundary-based Poisson−Boltzmann (MIBPB),98,102,112

chemistry at Harvard macromolecular mechanics (CHARMM)
PBEQ-Solver,104 and treecode-accelerated boundary integral
(TABI) PB solver.113,114

The PB and GB models have been applied to SARS-CoV-2
studies including protein−ligand binding and protein−protein
binding energetics. The surface electrostatic potential values of
S protein and Mpro were calculated for SARS-CoV and SARS-
CoV-2 with almost the same values for both viruses,115 as well
as the SARS-unique domain.116 When focusing on the RBD of
S protein binding to ACE2, slightly higher binding energy was
revealed for SARS-CoV-2 compared to SARS-CoV because of
enhanced electrostatic interactions with the negative electro-
static potential of ACE2 and positive electrostatic potential of
RBD.117 For the fusion cleavage site on S protein, mutations
near the cleavage site caused changes in the electrostatic
distribution of the S protein surface.118 Antigens targeting
SARS-CoV-2 from T cells were studied using the electrostatic
surface potentials.119 By studying the surface potential of S
protein, it was shown that the pH and salt concentration
changed dramatically in terms of scale and sign for electrostatic
interactions.120 Recently, Dung et al. proposed a theoretical
model to elucidate intermolecular electrostatic interactions
between a virus and a substrate. Their model treats the virus as
a homogeneous particle having surface charge and the polymer
fiber of the respirator as a charged plane. The electric
potentials surrounding the virus and fiber are influenced by the
surface charge distribution of the virus. The PB equation was
used to calculate the electric potentials. Then, Derjaguin’s
approximation and a linear superposition of the potential
function were extended to determine the electrostatic force.121

2.1.3. Molecular Dynamics (MD) Simulation. Macro-
molecular structures are highly dynamic rather than static. X-
ray crystallography and nuclear magnetic resonance (NMR)
reveal that even the same molecule can adopt multiple
conformations.122,123 On the other hand, conformational
change plays a significant role in biomolecular functions.
While NMR is limited to small biomolecules and X-ray
crystallography can only provide static structures, MD
simulation is an effective way to investigate biomolecular
conformational changes.124,125 The Poisson−Boltzmann-based
MD is also studied.126 Furthermore, thanks to high-perform-
ance computing platforms such as graphical processing units
(GPUs), current MD simulations can reveal conformational
changes of biomacromolecules such as proteins, DNA, and
RNA in the time scale of milliseconds (ms).127

MD simulation is becoming an invaluable computational
method commonly used for understanding the biomolecular
structure and dynamics of atoms in macromolecules (proteins
and RNA). Describing internal forces in the structure with
simple mathematical functions, the motions are determined by
using Newton’s second law.128 In Figure 4a, a general MD
algorithm is demonstrated, where potential energy functions
(force field), energy minimization, environment settings,
ensembles, and solvation are included. In the prediction of
atom positions and velocities, equations are given by a
standard Taylor expansion. Classical interatomic potentials or
quantum mechanisms are applied to calculate forces, which is
followed by the correction of positions and velocities with
some functions f, g of a, and Δt by energy minimization.
Among all their effects on MD simulations, a collection of
suitable force field functions is of fundamental importance to

all other dynamics methodologies, which will be introduced
first.
Molecular Mechanics Force Field. A molecular mechanics

force field is a set of functions equipped with an associated set
of parameters, describing the interactions between atoms. The
energy function for nonbonded interactions is associated with
simple pairwise additive functions, van der Waals and
electrostatic forces, of nuclear coordinates only, while for
bonded groups, that is the forms of chemical bonds, bond
angles, and bond dihedrals.129 For example, the functional
form of a typical force field such as AMBER130 is given as
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Ç
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where kr and kθ are the force constants for the bond lengths
and bond angles, respectively. Here, r and θ are a bond length
and a bond angle, r0 and θ0 are the equilibrium bond length
and bond angle, ω is the dihedral angle, kn is the corresponding
force constant, n is the multiplicity, and phase angle γn takes
values of either 0° or 180°. The nonbonded part of the
potential is represented by the Lennard-Jones repulsive Aij and
attractive Bij terms for Coulomb interactions between partial
atomic charges (qi and qj). Here, Rij is the distance between
atoms i and j. Finally, ϵ is the dielectric constant that considers
the medium effect that is not explicitly represented and usually
equals 1.0 in a typical solvated environment where the solvent
is represented explicitly. The nonbonded terms are calculated
for atom pairs that are either separated by more than three
bonds or not bonded. CHARMM is another popular force
field.131 Polarizable models, such as the AMOEBA force
field,132 have been developed to achieve higher accuracy. To
tackle systems with an excessive number of atoms, coarse-
grained models are also developed. In these models, a group of

Figure 4. (a) Workflow of molecular dynamics simulations. (b)
Workflow of the metropolis Monte Carlo method.
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atoms is represented by a “pseudo-atom”, so the number of
atoms is largely reduced.133 Popular coarse-grained models are
the Go̅ model,134 MARTINI force field,135 united-residue
(UNRES) force field,136 etc.
Energy Minimization. Energy minimization methods are

applied to efficiently optimize molecular structures. In a
complex system of N atoms, the potential energy function,
such as eq 9 U(rN), has its global minimum. It is extremely
computationally expensive to provably locate the global
minimum. With an unrefined molecular structure equipped
with a force field, energy minimization methods can be
iteratively applied to molecular systems. The steepest descent
method is one of the most popular iterative descent methods,
which uses derivatives of various orders and points the path
toward the nearest energy minimum. Thus, the force is
calculated by

UF r r( ) ( )= −∇ (10)

where r is the vector of the atomic coordinates.
Solvation. In an aqueous environment, a protein is solvated

in a pure or ion-containing water environment, and explicit
solvent models are computationally expensive. To avoid using
water explicitly in modeling, numerous implicit solvent models
have been developed.82−93 Two implicit solvent models, the
Poisson−Boltzmann method and the generalized Born model,
have been described in previous sections. In addition, there are
explicit solvent models such as the transferable intermolecular
potential with 5 points model,137 the extended simple point
charge model,138 and the flexible simple point charge model
water models.
Since MD simulations can provide many samplings, one can

calculate the free energy change between different states from
these samplings. Typical binding free energy calculation
methods based on MD simulations are the molecular
mechanics energies combined with Poisson−Boltzmann or
generalized Born and surface area continuum solvation (MM/
PBSA and MM/GBSA),108,139,140 free energy perturbation
(FEP),141 thermodynamic integration,142 metadynamics,143

and steered MD simulations.144 Recently, a method that is
more efficient than normal-mode analysis, called WSAS (work
and social adjustment scale),145 was developed to estimate the
entropic effect in the free energy calculation.
2.1.3.1. MD Simulations Revealing Conformational

Changes. The most important application of MD simulations
is to investigate the dynamical properties of SARS-CoV-2
proteins and the interactions between proteins and inhibitors.
Moreover, Mpro and S protein are the two main targets of
SARS-CoV-2 proteins to investigate, while some studies
focused on PLpro. For larger systems, coarse-grained MD
simulations are implemented.
Mpro. To enhance sampling of conformational space, a

microsecond-scale Gaussian accelerated MD simulation to
SARS-CoV-2 Mpro was performed,146 where the simulations
identified cryptic pockets within Mpro, including some regions
far from the active site. The 2 μs MD trajectories of the apo
form of the SARS-CoV-2 Mpro indicated that the long loops,
which connect domains II and III and provide access to the
binding site and the catalytic dyad, carried out large
conformational changes.147 Additionally, MD simulations
were applied to compare the dynamical properties of the
SARS-CoV-2 Mpro and SARS-CoV Mpro, which suggests that
the SARS-CoV Mpro has a larger binding cavity and more
flexible loops148 and reveals the key interactions and

pharmacophore models between the Mpro and its inhib-
itors.149 Recently, Sanjeev et al. used MD simulations to study
the impact of a crowded environment on drug−Mpro
complexes, suggesting that crowding enhances the difference
in the dynamics of apo- vs drug-bound complexes.150

Lamichhane et al. not only ran MM/PBSA calculation but
also used the analysis by dihedral angle distribution and radial
distribution functions to confirm the strong interactions
between inhibitor N3 and Mpro.151

S Protein. MD simulations were performed to study the
binding of S protein and ACE2,152−156 which were the most
important studies of S protein. Notably, a 100 ns MD
simulation of the complexes of human ACE2 and S protein
from SARS-CoV-2 and SARS-CoV showed that the SARS-
CoV-2 complex was more stable.156 Grishin et al.’s MD
simulation suggests disulfide bonds play a critical role in S
protein−ACE2 binding and the flexibility of the surface loops
increases when the four disulfide bonds of the domain are
reduced.157 As for temperature, MD simulations at different
temperatures suggested S protein had a stronger binding at a
low temperature.158 Abdalla et al. investigated the effects of
mutations on S protein stability and solubility through MD
simulations in a 100 ns period.159 Inhibitor and antibody
binding to ACE2 was studied by MD simulations.160−162 One
of the studies suggested that the SARS-CoV-2 S protein can
interact with a nicotinic acetylcholine receptors (nAChRs)
inhibitor.161 Moreover, ACE2-Fc fusion proteins with the
SARS-CoV-2 S protein RBD were simulated by a glycosylated
molecular model.163 In a steered MD model, a semiopen
intermediate state was observed of the transition between
closed and open states of S protein.164 Further study was about
the motion of glycans in S protein by a 1 μs MD simulation,
uncovering the detail of the S protein glycan shield.165 A recent
interesting study by Lupala et al. performed an MD simulation
of the SARS-CoV-2 S protein with ACE2 from different
species. Their findings suggest that the ACE2 proteins of
bovine, cat, and panda form strong binding interactions with
RBD, while in the cases of rat, least horseshoe bat, horse, pig,
mouse, and civet, the ACE2 proteins interact weakly with
RBD.166

PLpro and Other Proteins. MD simulations were also used
to investigate the conformational changes of other SARS-CoV-
2 proteins. For PLpro, researchers performed pH replica-
exchange CpHMD (constant pH molecular dynamics)
simulations to estimate the pKa values of Asp/Glu/His/Cys/
Lys side chains and assessed possible proton-coupled dynamics
in SARS-CoV, SARS-CoV-2, and MERS-CoV PLpros.167 They
also suggested a possible conformational-selection mechanism
by which inhibitors bind to the PLpro. Supervised MD
simulations were employed to investigate the unbinding
pathways of GRL0617 and its derivates from PLpro.168 Sun
et al. applied MD simulations and topological and electrostatic
analyses to study the effects of palmitoylation on an E protein
pentamer. Their results indicated that the structure of the
palmitoylated E protein pentamer was more stable while the
loss of palmitoylation caused the pore radius reduced and even
collapsed, which might help the drug design for the treatment
of COVID-19.169

2.1.3.2. Coarse-Grained MD Simulations. Modeling the
whole SARS-CoV-2 in a fine grid is extremely time-consuming,
if not impossible. To study the behavior of SARS-CoV-2, a
coarse-grained model based on the data from a combination of
cryo-electron microscopy and X-ray crystallography was
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employed in a complete virion model.170 More importantly,
the binding between S protein and ACE2 or antibodies can be
studied by coarse-grained MD simulations.171 Bai et al. also
used their own coarse-grained models to predict mutation-
induced binding affinity changes between Mpro and human
ACE2.172 With replica-exchange umbrella sampling MD
simulations, a comparison of the binding of SARS-CoV-2 S
protein and SARS-CoV S protein to human ACE2 revealed
that the SARS-CoV-2 binding to human ACE2 is stronger than
that of SARS-CoV.173 The infectivity induced by mutations on
S protein is another problem after studying the binding of
ACE2 and S protein, where coarse-grained MD simulations
were employed to reveal the dynamics impact of mutations
T307I and D614G174 or SARS-CoV-2 variants B.1.1.7 and
P1.175 The impacts of mutations to antibodies CR3022 and
CB6 were also predicted.176 Lastly, glycan shield effects on
drug binding are also studied via multiscale coarse-grained MD
simulations.177

2.1.4. Normal-Mode Analysis. Compared to molecular
dynamics simulations, normal-mode analysis (NMA) has its
advantages in dealing with the flexible motions accessible to a
protein system at a steady-state position. Based on the
equation of motion, normal-mode analysis studies molecular
structure conformation by a restoring force acting on a
vibrational system perturbed slightly at its equilibrium.
Achieving its efficiency for large proteins and protein
complexes, NMA is widely applied in large molecules and
homology modeling studies, as well as evolutionary and
stability analysis of proteins. Additionally, for computational
efficiency, the elastic network model (ENM), Gaussian
network model (GNM), and anisotropic network model
(ANM) are developed and applied to similar problems.
The derivation of normal-mode analysis starts from the

equations of motion. It is formulated from Lagrange’s second
kind equation, with the Lagrangian E Uk= − , where Ek

and U are the kinetic and potential energies of the molecular
system, respectively.178−180 The potential energy U is
calculated by eq 9. The system is defined to be in a potential
minimum of equilibrium where the generalized forces acting
on it are eliminated. In this Lagrangian mechanical system
M( , ), M is a configuration space and Lagrangian

v tr( , , )= , where r ∈ M, v is the velocity vector at
position r, and t is the time. They thus define the generalized
coordinates r ̂ and apply the Taylor expansion to the potential
energy. The equation can be formulated as

i
k
jjjjj

y
{
zzzzz

i

k
jjjjjj

y

{
zzzzzzU U

U
r

U
r r

r r( ) ( )
1
2

...
i

i
i j

i j
r r

2
η ηη= ̂ + ∂

∂
+ ∂

∂ ∂
+

̂ ̂ (11)

where ri is the ith component of the instantaneous
configuration and ηi = ri − rî. Here, the Einstein summation
convention is used. Note that eq 11 studies the mechanism
system at equilibrium, and therefore, the first term can be set
to zero in terms of the minimum value of the potential with the
second term zero at any minimum. We can rewrite the
potential energy to be
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where Uij is the Hessian matrix. As for the kinetic energy Ek, it
is given as
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where M is a diagonal matrix of the mass of each particle. By
applying Lagrange’s equation, the equations of motion can be
given as

M
d
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with one oscillatory solution ηi = aij cos(ωjt + δj), where aij is
the amplitude of oscillations, ωj is the frequency, and δj is a
factor. Here, it is easy to obtain the eigenvalue problem UA =
λA, where A is an eigenvector of the aforementioned Hessian
matrix and λ is an eigenvalue which is the square of frequency
ωk. The eigenvector is also referred to as a normal-mode vector
for a particle’s movement in terms of direction and distance
with a certain frequency.

2.1.4.1. Elastic Network Model. Though NMA has
computational efficiency compared to MD simulation, its
computation is still expensive, especially for proteins
containing tens of thousands of atoms. Additionally, one
assumption of NMA requires energy minimization to ensure
the starting conformation is at equilibrium. This minimization
process might distort the structure, leading to a different
structure from the experimental one. Therefore, a variety of
coarse-grained approximate algorithms has been developed to
overcome these limitations.181,182 Among them, the elastic
network model (ENM) is widely applied.
The ENM simplifies the force fields used in standard NMA

by a harmonic potential183

U k d dr( ) ( )
d R

ij ij
0 2

ij C

∑= −
< (15)

where dij is the distance between the ith and jth atoms, dij
0

stands for the distance at the initial structure, and k mimics the
spring constant in Hooke’s law. RC is a cutoff and usually is set
between 7.0−8.0 Å, according to the distances between
nonbonded atoms.184 More studies consider the Cα atoms
only, for their sufficiency in backbone motion investigation.
Many generalizations implemented the ENM’s idea to
reformulate potential functions.

2.1.4.2. Gaussian Network Model and Its Generalization.
One of the generalizations is the Gaussian network model
(GNM),185 which is considered the most efficient one, using
the discrete Laplacian matrix instead of the Hessian matrix.
The expected residue fluctuations constructed by the GNM are
in great agreement with the Debye−Waller factor (a.k.a. B
factor). More precisely, the B factor of the ith α carbon atom
(Cα) in an N-particle coarse-grained representation of a
biomolecule can be obtained by the generalized GNM
(gGNM) method186,187

B a i N( ) , 1, 2, ...,i ii
gGNM

gGNM
1= Γ ∀ =−

(16)

where agGNM is a fitting parameter and (Γ−1)ii is the ith
diagonal element of the matrix inverse Γ−1. Here, Γ is the
generalized Kirchhoff matrix
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where ri are positions of Cα, the kernel functions Φ can be
generalized exponential functions or generalized Lorentz
functions, and ηj are the characteristic distances.186,187 If the
kernel functions are set to be {0, 1} with distance ∥ri − rj∥
outside or inside a fixed cutoff distance, then the Kirchhoff
matrix becomes the Laplacian matrix and the GNM is
recovered.
2.1.4.3. Anisotropic Network Model and Its General-

ization. Another popular method is the anisotropic network
model (ANM),183,188 which gives extra information about the
directionality of the fluctuations. The B factor of ith Cα in an
N-particle coarse-grained biomolecule can be displayed by the
generalized ANM method186,187

B a H i N( ) , 1, 2, ...,i ii
gANM

gANM
1= ∀ =−

(18)

where agANM is a fitting parameter and (H−1)ii is the ith
diagonal element of the matrix inversion of Hessian matrices.
2.1.4.4. Applications to SARS-CoV-2. The SARS-CoV-2

Mpro is used as one of the most popular target proteins for
drug repurposing in applications. According to the stability
analysis by NMA, the inhibitor repurposing of SARS for
COVID-19 may be challenging.148 With further investigations
of Mpro by the ENM, possible noncompetitive inhibiting
binding sites were suggested189 (see Figure 5). Moreover, the

SARS-COV-2 S protein is another target for inhibitor
repurposing. In the comparison of the S proteins of SARS-
CoV-2, SARS-CoV, and MERS-CoV, the ANM was employed
to study the dynamic modes of the S proteins, revealing that
the receptor binding motif had high vertically upward
motion.190 In ref 191 ENM-based analysis tools were applied
for the allosteric modulation region of the S protein with
ACE2, and it was indicated that hepcidin induces an inhibitory
effect on the binding affinity of the S protein and ACE2. The
stability and flexibility of mutations can be examined by
normal-mode analysis, especially the mutations on RBD or

high-frequency mutation D614G of the S protein175,192,193 and
on other SARS-CoV-2 proteins.193,194

2.1.5. Monte Carlo Methods. Monte Carlo (MC)
methods rely on repeated random sampling to obtain
optimized numerical results. In principle, Monte Carlo
methods can be used to solve any problems having a
probabilistic distribution.195 When the probability distribution
of the variable is parametrized, researchers often use a Markov
chain Monte Carlo (MCMC) sampler,196 whose central idea is
to design a judicious Markov chain model with a prescribed
stationary probability distribution. By the ergodic theorem, the
stationary distribution is approximated by the empirical
measures of the random states of the MCMC sampler.
Recently, a machine-learning-based implicit solvent Monte
Carlo method was developed to predict the molecular
structure.197

Importantly, metropolis Monte Carlo methods198 are
popular in molecular modeling. As shown in Figure 4b, the
essential idea is that, if the energy of a trial conformation is
lower than or equal to the current energy, it will always be
accepted. If the energy of a trial conformation is higher than
the current energy, then it will be accepted with a probability
determined by the Boltzmann (energy) distribution,
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where j is the current conformation, i is the new conformation,
j i( )accept → is the probability to accept the new conforma-

tion, ΔUij is the energy difference between i and j, kB is the
Boltzmann constant, and T is temperature. Therefore, the
evolution of molecular conformations can be simulated. There
are several aspects of MC applications regarding SARS-CoV-2.
An MC simulation of ionizing radiation damage to the SARS-
CoV-2 found that γ-rays produced significant S protein damage
but much less membrane damage.199 Thus, the γ-rays were
proposed as a new effective tool to develop inactivated
vaccines. A metropolis MC sampling process was applied to
simulate a pharmacokinetic model of the human immunode-
ficiency virus (HIV) drug darunavir against SARS-CoV-2.200

MC modeling was also implemented in the analysis of SARS-
CoV-2 PLpro201 and N protein.202 Studies focusing on Mpro
and S protein are introduced as follows.
Mpro. Liang et al. used protein energy landscape exploration

(PELE) Monte Carlo simulations for a blind binding site
search and the best binding poses for these binding sites.203

Their simulations found that compounds such as cyanidin-3-O-
glucoside and hypericin have the strongest interactions with
the active sites. Their PELE also identified additional binding
sites for hypericin with comparable interaction energies.203 A
coarse-grained Monte Carlo simulation was integrated with
other computational methods to reveal the relationship
between the rigidity and enzymatic function for Mpro,204

while the Mpro inhibitory activity of aromatic disulfide
compounds was studied by the weight search of MC
simulations for the QSAR (quantitative structure−activity
relationship) model.205

S Protein. Two major directions of the S protein are
mutation studies,206,207 namely G614D and N501Y, and
binding problems about ACE2,117,208 antibodies,171 and
peptide-based inhibitors.171,208,209 To estimate the density of

Figure 5. Illustration of the ENM on SARS-CoV-2 Mpro.189

Reproduced with permission from ref 189. Copyright 2021
Dubanevics and McLeish under Creative Commons Attribution 4.0
International License https://creativecommons.org/licenses/by/4.0/.
(a) Mpro secondary structure. (b) Elastic model of Mpro. Cα atoms
are in blue, and node-connecting springs are in black. (c) The first real
vibrational mode eigenvectors are in yellow.
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states of the S protein system, the Wang and Landau Monte
Carlo method was applied to study the human ACE2
complexes with SARS-CoV-2 and SARS-CoV S protein
RBDs,208 while the difference between SARS-CoV-2 and
SARS-CoV was studied.210 In the study of the heterogeneity of
glycosylation on the S protein trimer make up, the MC
approach was applied to calculate the glycan mass distribution
because of the enormous number of possible glycoforms.211

2.1.6. Molecular Docking. As shown in Figure 6a,
molecular docking, which can predict the binding conforma-
tion of a ligand on its binding site, is one of the most popular
methods in the structure-based drug design.213,214 A typical
docking program includes two key components: a scoring
function to calculate the binding energies of different
conformations and a search algorithm to sample the conforma-
tional degrees of freedom and locate the global energy
minimum from all the sampled conformations.215 Traditional
scoring functions are derived from physical models such as
molecular mechanism force fields. In recent years, more and
more machine-learning-based scoring functions have been
developed, which outperform traditional scoring functions in
many cases.216−219 In addition to regular docking, ensemble
docking220 considers the dynamics of the receptor and docks a
ligand to various receptor conformations (often yielded from
molecular dynamics simulation). Molecular docking is well-
established in early stage drug discovery. As a result, during the
pandemic, to seek drug leads, docking studies have been
performed targeting a variety of SARS-CoV-2 proteins.
Mpro. One important source for searching for SARS-CoV-2

treatments is existing drugs. In a quite extensive drug
repurposing work, 7173 purchasable drugs, including 4574
unique compounds and stereoisomers, were docked and their
binding affinities to Mpro were predicted.221 As a result,
diosmin, hesperidin, and MK-3207, with a docking score of
−10.1 kcal/mol, were suggested as the most potent inhibitors.
A collection of 8625 drugs or compounds from FDA,
drugbank, and Zinc data sets were docked to Mpro,222 and

seven drugs such as metyrapone could maintain key
interactions within the active site of the enzyme suggested
by the crystallographic complex structures, revealing their
repurposing potential. Additionally, Sencanski et al.223 and
Gurung et al.224 both screened about 1400 FDA-approved
drugs with docking, predicting that dihydroergotamine has a
promising affinity. Docking was used to evaluate the potency of
around 100 approved protease inhibitors, and it suggested that
faldaprevir has the strongest binding affinity.225 In a screening
of roughly 7100 molecules, several natural molecules such as δ-
viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-
oxalate, nympholide A, afzelin, biorobin, hesperidin, and
phyllaemblicin B were identified.226 Many other stud-
ies222,227−236 have also docked and repurposed existing drugs
against SARS-CoV-2 Mpro.
Natural products are popular inhibition candidates. In a

study of 1000 active phytochemicals from Indian medicinal
plants by molecular docking, rhein and aswagandhanolide were
predicted to have binding affinities over −8.0 kcal/mol.237 In a
study of 100 natural and nature-inspired products from an in-
house library to Mpro, leopolic acid A is predicted to have the
highest affinity of −12.22 kcal/mol.238 From mushrooms and
other herbal or natural compounds, colossolactone VIII239 and
eugenin240 were identified as having a high affinity to Mpro. It
is predicted that from Amphilophium paniculatum leaves,
luteolin 7-O-b-glucopyranoside (cynaroside) has the highest
affinity of −9.54 kcal/mol.241 All of them also predicted
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) properties of their compounds. Moreover, a variety of
natural products were also investigated by docking-based
virtual screening, including syzygium aromaticum, cassia
acutifoliaaloe vera, rhus spp., moroccan medicinal plants,
fungal metabolite, millet, tannins, neem leaves, nigella sativa,
etc.242−256

Some researchers focus on peptides and small compounds
from other sources. Tsuji et al.257 screened compounds from
the ChEMBL (chemical database of bioactive molecules with

Figure 6. (a) Procedure of molecular docking simulation. (b) Procedure of quantum mechanics/molecular mechanics (QM/MM) calculation.212

Reproduced with permission from ref 212. Copyright 2017 Royal Society of Chemistry.
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drug-like properties) database258 to Mpro via docking,
suggesting that the compound CHEMBL1559003 with a
binding affinity of −10.6 kcal/mol is the most potent. In a set
of 13535 Mpro compounds, the consensus of the docking
scores from the five different pieces of docking software
evaluates the potency.259 Udrea et al.260 predicted the binding
affinities of 15 phenothiazines, where the compound
sulphoridazine (SPZ) was reported as the most effective.
Ghaleb et al.261 also studied some pyridine N-oxide
compounds, indicating the most potent one with a predicted
pIC50 (the negative log of the IC50 when converted to molar)
value of 5.294. More similar works can be found in the
literature.262−270

S Protein. Many researchers focus on the binding
interactions of S protein and the host ACE2 or antibodies. A
docking calculation was applied to construct the complexes of
SARS-CoV-2 S protein and SARS-CoV S protein binding to
ACE2,271 which suggested that there were more residue
interactions between SARS-CoV-2 S protein and ACE2 than
that of SARS-CoV S protein. It also leads to a higher binding
affinity and is consistent with a recent experiment.272 In a
study of ACE2s from cats, tigers, hamsters, dogs, and ferrets via
homology modeling and docking, it was shown that the cat and
tiger ACE2s could potentially interact with S protein RBD and
share the same virus-binding interface with ACE2, whereas the
dog, ferret, and hamster ACE2 were not predicted to establish
stable interactions with S protein RBD.273 A docking
simulation suggested ACE2 polymorphisms from different
human races could change the ACE2 affinity to SARS-CoV-2 S
protein.274 For other receptors, S protein cannot strongly bind
to the human dipeptidyl-peptidase 4 (DPP4) receptor,275

while S protein RBD was able to bind to many amyloidogenic
proteins, initiating aggregation of these proteins and leading to
neurodegeneration in the brain.276 Interestingly, a recent
docking study by Kazybay et al. suggested that the Omicron
variant EGFR (epidermal growth factor receptor) was one of
the potential binary partners of the S RBD that binds almost
with equal affinity as the RBD−hACE2 complex.277 Hanai et
al. used docking studies to suggest that Omicron’s binding to
ACE2 was stronger than Delta’s and Alpha’s.278

More investigations were carried out to repurpose existing
drugs to S protein or find inhibitors for S protein. In a study of
screening FDA-approved drugs, iron oxide nanoparticles were
suggested for COVID-19 treatment.279 Existing drugs, such as
amentoflavone, ledipasvir, tenofovir, levodopa, lopinavir, and
ubrogepant, against S protein were investigated.280−283 For
natural products inhibiting S protein, studies focusing on
indigenous food additives, herbal constituents, antioxidants,
traditional medicinal plants, tea, and others284−289 suggested
potent inhibitors such as phycocyanobilin, phycoerythrobilin,
phycourobilin, folic acid, hinokiflavone, and phytochemicals.
Lastly, some other compounds are repurposed to inhibit the S
protein. Mohebbi et al.290 screened more than 1 billion
compounds from the databases ZINC Pharmer and Pharmit in
silicon. The docking of dermaseptin-based antiviral peptides to
the S protein was studied.291 Some drugs were identified with
high binding potential against the ACE2−S protein interaction
pocket, such as Atazanavir, Grazoprevir, Saquinavir, Simepre-
vir, Telaprevir, and Tipranavir.292

RdRp. RdRp is another target for docking inhibitors from
existing drugs or traditional medicines. In a data set of 7922
approved or experimental drugs, Nacartocin has the highest
binding affinity.293 Beg et al.294 screened 70 anti-HIV (human

immunodeficiency virus) or anti-HCV (hepatitis C virus)
drugs, reporting that the drug paritaprevir has the highest
binding affinity. Aftab et al.295 studied 10 antiviral drugs and
revealed that Remdesivir’s docking score was the highest, but
Padhi et al.194 showed that the docking affinity of remdesivir is
relatively low. Meanwhile, many researchers screened potential
drugs in traditional medicinal compounds. Theaflavin was
reported to have the highest binding affinity among a data set
of 83 traditional Chinese medicinal compounds plus their
similar structures from the ZINC15 database.296 Pandeya et
al.297 also investigated some biologically active alkaloids of
argemone mexicana. Other RdRp drug repurposing works can
be found in the literature.298−301

Other Targets. Some docking studies selected the SARS-
CoV-2 PLpro as their targets. Choudhury et al.302 docked 27
existing drugs to PLpro and predicted stallimycin to be the best
inhibitor. Similarly, Li et al.303 repurposed 21 drugs to inhibit
SARS-CoV-2 PLpro and reported neobavaisoflavone as the
most potent candidate. Mohideen et al.304 revealed that the
binding affinity of the natural product thymoquinone to the E
protein is −9.01 kcal/mol. Borgio et al.305 screened 23 FDA-
approved drugs to target the helicase of SARS-CoV-2 and
reported vapreotide having a binding affinity of −11.58 kcal/
mol as the most potent candidate. Mahmud et al.306 showed
that drugs such as valrubicin, aprepitant, and saquinair have
excellent docking scores to SARS-CoV-2 nsp15. Khan et al.307

used docking to study the interaction between N protein and
nsp3.
Multiple Targets. Many researchers studied the whole

SARS-CoV-2 or multiple SARS-CoV-2 proteins for more
potent inhibitors. In an analysis of therapeutic targets for
SARS-COV-2 involving homology modeling and molecular
docking, a data set of 78 commonly used antiviral drugs for
SARS-CoV-2 proteins was selected.22 By using molecular
docking on 2631 US FDA-approved small molecules, five
drugs (avapritinib, bictegravir, ziprasidone, capmatinib, and
pexidartinib) were suggested as candidates against SARS-CoV-
2 proteins. In a study of docking 11 antiviral drugs to Mpro, S
protein, PLpro, nsp10, nsp16, and nsp9, ritonavir, lopinavir,
and remdesivir were selected as drug candidates against SARS-
CoV-2.308 Other approved structural analogs, such as
telbivudine, tenofovir, amprenavir, and fosamprenavir, were
identified as potent drugs for SARS-CoV-2 by molecular
docking.309 On a data set consisting of 2285 FDA-approved
drugs and 1478 Taiwan National Health Insurance-approved
drugs (https://covirus.cc/drugs/), a virtual screening targeting
S protein, Mpro, PLpro, RdRp, N protein, hACE2, and human
cellular TMPRSS2 were conducted.310 Chandel et al.311

repurposed about 2000 FDA-approved compounds targeting
S protein and nsp9, reporting that Tegobuvir was the most
potent candidate to S protein and Conivaptan was the most
potent candidate to nsp9. Many works considered two
different protein targets. Elmezayen et al.312 virtually screened
4500 approved or experimental drugs against Mpro and human
TMPRSS2, finding out that ZINC000103558522 has the
highest binding affinity to Mpro and ZINC000012481889 has
the highest binding affinity to the TMPRSS2. Via the
DockThor-VS platform, Guedes et al.313 predicted the binding
affinities of over 40 approved drugs to SARS-CoV-2 Mpro, S
protein, PLpro, RdRp, N protein, and nsp15. The binding
affinities of the compounds protoporphyrin IX, verteporfin,
and chlorin e6 to Mpro, S protein, ORF3a, ORF9b, and
ORF7a were studied.314 In addition, some components such as
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essential oil components,315 organosulfur compounds,316 and
methisazones317 were investigated. It was exhibited that rutin
has some inhibitory effect on SARS-CoV-2 proteins.318

Phytochemicals from the traditional medicines were also
investigated by docking, such as those from traditional
Himalayan medicinal plants,319 Indian traditional medicinal
plants,320−333 Chinese traditional medicines,334 and Brazilian
herbal medicines.335

Targeting Mpro, S protein, and RdRp, Parvez et al.298

studied some plant metabolites. Maurya et al.336 investigated
yashtimadhu (glycyrrhiza glabra) active phytochemicals, and
Alexpandi et al.337 simulated quinoline-based inhibitors.
Flavonoids might inhibit Mpro, S protein and RdRp as
well.338,339 Against the S protein and nsp15S, Sinha et al.340

screened 23 saikosaponins and reported that saikosaponin V
was potent to both targets. Montelukast was predicted to be
potent to both Mpro and RdRp341 as well as Camptotecin.287

Srikanth et al.342 and Agrawal et al.343 virtually explored the
potential of andrographolide as well as other antivirals,
antibiotics, antiparasitics, flavonoids, and vitamins in inhibiting
S protein and RdRp. Another molecular docking of
compounds such as coumarins, porphyrins, propolis, or
existing drugs can be found in refs 344−349.
2.1.7. Binding Free Energy Calculations. In the study of

SARS-CoV-2, protein−protein and protein−ligand interaction
processes are essential. Some of these processes are
investigated through molecular biophysics, such as the binding
free energies for protein−ligand and protein−protein com-
plexes. To estimate the binding free energies, classical methods
such as FEP and thermodynamic integration (TI) methods are
computationally expensive, while many other methods are
developed considering efficiency, such as the molecular
mechanics/Poisson−Boltzmann surface area (MM/PBSA)
method,350,351 the molecular mechanics/generalized Born
surface area (MM/GBSA) method,351,352 the linear interaction
energy (LIE) method,353 the chemical Monte Carlo/molecular
dynamics (CMC/MD) method,354,355 the pictorial representa-
tion of free energy components (PRO-FEC) method,356 etc.
Among these methods, MM/PBSA and MM/GBSA are widely
applied for their accuracy and efficiency.
2.1.7.1. MM/PBSA and MM/GBSA. In the MM/PBSA and

MM/GBSA approaches,108 the binding free energy ΔΔGbind
for binding between a ligand and a protein receptor in the form
of a protein−ligand complex can be calculated by

G G G Gbind complex protein ligandΔΔ = Δ − Δ − Δ (20)

where ΔGcomplex is the total free energy of the complex and
ΔGprotein and ΔGligand are the total free energies of the protein
and ligand in solvent, respectively (see Figure 7). The free
energy for each individual body can be calculated by

G V G TSMM sol* = ⟨ ⟩ + Δ − (21)

where G* are referring to the total free energies of the complex,
protein, and ligand, ⟨VMM⟩ is the average molecular mechanical
potential energy in a vacuum of eq 9, and TS is the entropic
contribution to the free energy with the temperature T and the
entropy S in a vacuum. ΔGsol is the free energy of solvation

G G Gsol sol
polar

sol
nonpolarΔ = Δ + Δ (22)

The polar solvation energy ΔGsol
polar is calculated by solving the

PB equation or the GB equation, and the nonpolar solvation
energy ΔGsol

nonpolar is evaluated by cavity formation in the

solvent and van der Waals interactions between solvent and
solute. More details about the PB and GB models can be found
in section 2.1.2.

2.1.7.2. MD-Based Methods. Besides MM/PBSA or MM/
GBSA, other binding free energy calculation methods such as
FEP, metadynamics, and steered MD simulations were also
applied to evaluate the binding affinities of inhibitors to SARS-
CoV-2 Mpro or S protein.
FEP. MD simulations and FEP calculations were considered

to uncover the mechanism of the stronger binding of SARS-
CoV-2 S protein to ACE2 by Wang et al.357 They compared
the hydrogen-bonding and hydrophobic interaction networks
of SARS-CoV-2 S protein and SARS-CoV S protein to ACE2
and calculated the free energy contribution of each residue
mutation from SARS-CoV to SARS-CoV-2. FEP calculations
indicated that the N501Y mutation on the SARS-CoV-2 S
protein enhanced the binding to host ACE2.358 FEP
calculations indicated the E484Q/L452R mutations signifi-
cantly reduce the binding affinity between the RBD of the
Kappa variant and the antibody LY-CoV555.359 Ngo et al.360

first docked about 4600 drugs or compounds to Mpro and
then used steered MD simulations to rescore the top 35
compounds. They reevaluated the top three compounds using
FEP free energy calculations. Zhang et al.361 docked remdesivir
and ATP to RdRp and used FEP to calculate the binding free
energy, indicating that the binding of remdesivir was about 100
times stronger than that of ATP and it can inhibit the ATP
polymerization process. FEP calculations were performed by
Hassan et al.,362 Allam et al.,363 and Alhadrami et al.364

Thermodynamic integration (TI). In a recent work,365 the
authors used MD simulations to explore the structural
coordination and dynamics associated with the SARS-CoV-2
nsp13 apo enzyme, as well as its complexes with natural
ligands. The binding free energy and the corresponding
mechanism of action by TI calculations were presented for
three small molecules that are revealed as efficient inhibitors of
the previous SARS-CoV nsp13 enzyme.
Metadynamics. Researchers docked 16 artificial-intelligence

generated compounds by Bung366 to Mpro and then ran
metadynamics to calculate their binding affinity and predicted
some potential inhibitors.367 Metadymics simulations were
used to predict the affinities of three neem tree extracts to S
protein.368

Steered MD Simulations. Steered MD simulations were
used to dock drugs and marine compounds to Mpro, to infer

Figure 7. Illustration of the thermodynamic cycle of MM/PB(GB)SA
calculations. ΔGcomplex is the total free energy of the complex, and
ΔGprotein and ΔGligand are the total free energies of the protein and
ligand in solvent, respectively. ΔGbind,sol and ΔGbind,vac are the total
free energies in solvent and in vacuum, respectively.
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the top inhibitors by Tam et al.369,370 MM/PBSA and steered
MD simulations suggest that the adsorption of the ACE2 on
specific silane monolayers could increase its affinity toward the
S protein RBD, which could help develop biosensing tools
efficient toward any variants of the SARS-CoV-2 S protein.371

Semiempirical Free Energy Force Field Methods. A
semiempirical free energy force field372 was also adopted to
calculate the affinities of 16 drugs to S protein.373

In most applications, MM/PBSA or MM/GBSA calculations
are used to select the trajectories or rank the drugs. The
applications of MM/PBSA or MM/GBSA on SARS-CoV-2
proteins are discussed below.
Mpro. Docking, MD simulations, and MM/PBSA binding

free energy calculations were applied to investigate around
10000 drugs or experimental drugs from the DrugBank.374

These compounds were first screened by docking, and then
MD-based MM/PBSA binding free energy calculations were
performed on the top 36 compounds. The reported binding
data were the consensus of docking and MM/PBSA prediction,
and leuprolide was the top one. Very similar work also
screened thousands of compounds from the DrugBank by
docking and MM/GBSA MD simulations.375 Gahlawat376

implemented an MM/GBSA procedure on 2454 FDA-
approved or experimental drugs, 138 natural products, and
144 other inhibitors to predict the MM/GBSA binding free
energy of the top ones screened by docking. MM/PB(GB)SA
was also implemented for trajectory selection.377,378 In
addition, Sharma et al.379 also implemented MM/PBSA to
screen 2100 drugs as well as 400 other compounds and
reported that cobicistat had the highest binding affinity of
−11.42 kcal/mol. Cobicistat, flavin adenine dinucleotide, and
simeprevir were suggested through drug ranking according to
binding energy by MM/PB(GB)SA calculations. Other
assessments based on docking and MM/PB(GB)SA calcu-
lations focused on specific drugs or compounds such as
ravidasvir, lopinavir, ritonavir, saquinavir, teicoplanin, GC-376,
calpain XII, calpain II, anti-HIV drugs, doxorubicin, chlor-
oquine, quinoline, hydroxychloroquine, noscapine, echinocan-
dins, coumarins, and their derivatives.380−417

MM/PBSA and MM/GBSA methods were also applied to
predict the potency of natural products to Mpro. Ibrahim et
al.418 virtually screened the MolPort database containing
113,756 natural or natural-like products (https://www.
molport.com) by docking. The top 5,000 compounds were
selected and subjected to MD simulations combined with
MM/GBSA binding affinity calculations, and the compound
MolPort-004-849-765 was predicted to have the highest
binding free energy. Kapusta et al.419 also performed docking
on 13,496 natural or natural-like products from MolPort, and
the top 15 were chosen for rescoring by MM/GBSA
calculations. The authors reported MolPort-039−338−330 as
the most potent one. Prajapati et al.420 investigated 1830
secondary metabolites of fungal via docking, and additional
MM/GBSA calculations were performed on the top from
compounds. Mahmud et al.421 screened 1480 natural plant
products from the literature initially by docking scores, and
then the best 10% were rescored by MM/GBSA. Other natural
product sources screened by docking and MM/PB(GB)SA
against Mpro were flavonoid-based phytochemical constituents
of calendula officinalis, phytochemicals in Indian ginseng, food
compounds, marine natural polyketides, malaria-box com-
pounds, cressa cretica compounds, strychnos nux-vomica
products, ayurvedic compounds, moringa oleifera compounds,

withania sp. products, stilbenolignans from plants, acridine-
dione analogs, alkaloids from justicia adhatoda, tea plant
products, neem compounds, turmeric compounds, echinacea
angustifolia products, Withania somnifera (ashwagandha)
products, cyperus rotundus Linn products, salvia plebeia
products, lichen compounds, curcuma longa products, and
polyphenols from broussonetia papyrifera.422−458

There are more compounds screened by docking and MM/
PBSA or MM/GBSA against Mpro. Andrianov et al.459 first
virtually screened over 213.5 million chemical structures from
http://pharmit.csb.pitt.edu/ to select the ones satisfying the
pharmacophore model from the known X77 potent main
protease inhibitor. Then they docked them to Mpro and ran
MM/GBSA simulations of the docking complexes to calculate
binding free energy. Through this procedure, the authors
reported some potent inhibitors such as Pub-chem-22029441.
Jimenez et al.460 docked 4858 flavonoids to Mpro, and MM/
PBSA calculations were performed on the top six compounds.
The pharmacophore procedure was also performed where the
top three by docking scores were subjected to MM/GBSA
calculations, reporting macimorelin acetate as the best one.461

In a docking of the 15754 compounds in their in-house data
set to Mpro, compounds were rescored by MM/GBSA
calculations, reporting the most potent one, dimethyl
lithospermate.462 Khan et al.463 used docking to screen
approximately 8000 compounds in their in-house database
and applied MM/GBSA MD simulations to calculate the
binding affinities of the top five inhibitors, with remdesivir
being the best. Fakhar et al.464 screened 3435 anthocyanin
substructure compounds by docking and MM/GBSA calcu-
lations, reporting the best compound to be 44256921. Some
other compounds, such as α-ketoamide covalent inhibitors,
macrolactin compounds, echinocandins, essential oil com-
pounds, glucocorticoids, angucycline compounds, hydroxy-
chloroquine derivatives, aminoglycosides, imidazole deriva-
tives, Se-containing heterocyclic compounds, circadian clock
modulating compounds, oxazine substituted 9-anilinoacridines,
nitric oxide donor furoxan, nitric oxide donor heterocyclic
vasodilators, withanone caffeic acid phenethyl ester, tetracy-
cline, β-glutamyl-S-allylcysteine peptides, and others, were also
screened by docking and MM/PB(GB)SA simulations.465−484

S Protein. Both SARS-CoV and SARS-CoV-2 infect humans
through S protein binding to the human ACE2, and many
investigations focused on the interaction between the S protein
and the ACE2. In the comparison of the binding affinities of S
protein from SARS-CoV and SARS-CoV-2 to the human
ACE2 by MM/PB(GB)SA,485,486 the calculations indicated
that SARS-CoV-2 S protein bound to ACE2 much more tightly
than SARS-CoV S protein. The mechanism of tighter binding
of the SARS-CoV-2 S-protein was studied by using MD
simulations and MM/GBSA or MM/PBSA calculations by Xue
et al.,487 Jafary et al.,488 Spinello et al.,489 and Bhattacharyya et
al.490 Interestingly, MM/PBSA calculations at different
temperatures suggested that the SARS-CoV-2 RBD was more
resistant to temperature changes than the SARS-CoV RBD.491

Researchers ran MM/PBSA calculations and found that some
mutations on S protein could facilitate stronger interactions
with human ACE2.492−496

MD simulations and MM/PBSA calculations revealed that
the formation of disulfide bonds, prevalent during oxidative
stress, created a conformation more ready to bind to the
receptor, which offered future clues for alternate therapeutic
possibilities.497 Similar work was also performed by Ghasemi-
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tarei et al.498 One interesting study performed MM/PBSA
calculations to reveal the binding affinities of SARS-CoV-2 S
protein to the ACE2s from different species.499,500 This study
showed that chimpanzees’ binding affinity was even higher
than humans, cats, pangolin, dogs, and monkeys, and
chimpanzees had a similar affinity to humans, which suggested
some mammals were also vulnerable to SARS-CoV-2.
Additionally, a recent MM/GBSA study suggested SARS-
CoV-2 Omicron RBD shows weaker binding affinity than the
Delta variant to human ACE2.501

Drug repurposing against S protein was also implemented by
MM/GBSA or MM/PBSA. De Oliveira et al.502 docked 9091
approved or experimental drugs to S protein and selected the
top three to perform MM/PBSA calculation, revealing that
suramin sodium had the highest binding affinity. Following a
similar scheme, a study repurposed 8770 approved or
experimental drugs by docking and MM/GBSA, identifying
31h-phthalocyanine as the most potent candidate.503 Padhi et
al.504 performed docking and MM/PBSA calculation studies
on the inhibition of umifenovir (Arbidol) to the RBD/ACE2
complex. Moreover, MM/GBSA or MM/PBSA approaches
were also applied to calculate the efficacy of other compounds
to S protein. For example, a study performed docking to 330
galectin inhibitors against S protein and ran MM/GBSA
calculations to some active ones, revealing that ligand No.213
had the highest binding free energy.505 Rane,506 Singh et al.,507

and Li et al.508 calculated the potency of diaryl pyrimidine
derivatives, some bioactive molecules, and the MERS-CoV
receptor DPP4, respectively. Lastly, some MM/GBSA or MM/
PBSA investigations were about the use of natural products
against S protein. For example, docking and MM/PBSA
calculations were performed for 11 phytochemicals, suggesting
that quercetin had the highest affinity.509 Other studies that
applied MM/PB(GB)SA calculations on natural compounds to
block S protein were from Indian medicinal plants,510 the
NPACT (naturally occurring plant-based anticancer com-
pound-activity-target) database,511 luteolin,512 and curry.513

RdRp. In the study of 7496 approved or experimental drugs
against both SARS-CoV-2 and SARS-CoV RdRp, lonafarnib,
tegobuvir, olysio, filibuvir, and cepharanthine were screened
with high potency by docking and MM/GBSA calculations.514

Doharey et al.515 predicted the affinities of amodiaquine,
hydroxychloroquine, chloroquine, as well as ATP to RdRp by
docking and MM/GBSA calculations, suggesting that these
three drugs have higher affinities than ATP. Pirzada et al.516

and Arba et al.517 studied the binding mechanism of
remdesivir, ledipasvir, and paritaprevir to S protein through
docking, MD, and MM/PBSA simulations. Furthermore, as to
natural products and other compounds, Khan et al.518 screened
6842 South African natural products against RdRp using
docking and selected the top four for further investigation by
MD simulations and MM/GBSA calculations. Their most
potent one was Genkwanin 8-C-beta-glucopyranoside ranked
by MM/GBSA calculations. In another study of 100 natural
polyphenols by docking, the leading eight compounds were
used in MD simulations and MM/GBSA calculations, showing
that the compound TF3 was the best.519 Nakinadine B and
ormycalamide A were subjected to MM/GBSA studies in
docking of 51 marine sponge metabolites to RdRp.520 Sonousi
et al.521 and Jena et al.522 evaluated the efficacy of adenosine
derivatives and synthetic nucleotides to RdRp via docking and
MM/GBSA calculations. Molecular docking, MD simulations,
and MM/GBSA approaches have also been used to examine

the role of several short ionic peptides in inhibiting RdRp.523

Other similar studies include refs 524−531.
PLpro. In a repurposing of 1697 approved drugs against

PLpro by docking, the top 10 were studied by MD simulations
and MM/GBSA, with the drug phenformin being their best
one.532 Mitra et al.533 screened tens of natural compounds
from Vitex negundo L. by docking and ADMET predictions and
performed MM/GBSA calculations on the top four com-
pounds. By docking, MM/GBSA calculations, and interaction
analysis, the prediction of the potency of six fungal metabolites
to PLpro found GRL0617 is the only potent one.534 Via a
similar procedure, a binding free energy analysis suggests that
human ub-like interferon-stimulated gene product 15 binds
more strongly with SARS-CoV-2 PLpro compared to SARS-
CoV or MERS-CoV.535 Pitsillou et al.536 studied dietary
compounds and naphthalene-based inhibitors. Bosken et al.537

assessed the potential effectiveness of one naphthalene-based
inhibitor 3k and one thiopurine inhibitor 6MP through
docking, MD simulations, and MM/PBSA calculations.
Other Targets. Many MM/GBSA or MM/PBSA inves-

tigations focused on the SARS-CoV-2 N protein. For instance,
Khan et al.538 studied the mechanism of RNA recognition by
the N-terminal RNA-binding domain of the SARS-CoV-2 N
protein as well as mutation-induced binding affinity changes by
docking, MD simulations, and MM/GBSA calculations. In a
collection of 8987 compounds from the Asinex and PubChem
databases, one study was targeting against the N protein and
assessed the potency of the top 10 by MM/GBSA
calculations.539 Meanwhile, SARS-CoV-2 helicase (nsp13)
was another attractive target.540 Vivek-Ananth et al.541

estimated the docking scores of 10510 drug-like phytochem-
icals from PubChem to helicase, and the top five compounds
were further evaluated by MM/PBSA calculations. In another
work, 131 compounds were docked to helicase. More
importantly, via MM/GBSA and MM/PBSA calculations, the
best one from docking, nilotinib, was used as a probe to detect
its affinities to different binding sites of helicase.542 Research
about targets such as nsp16 or nsp10 can be found.543,544

Chandra et al.545 studied 2895 approved or experimental drugs
against NendoU (nsp15) and selected the top three
compounds from docking results and ran MM/PBSA
calculations for these three, identifying glisoxepide, with a
MM/PBSA binding free energy, as the most potent one. The
docking of 123 antiviral drugs to NendoU found simeprevir
had the highest binding energy, where the MM/PBSA
calculations also confirmed this finding.546 Encinar et al.547

used docking to screen 8696 approved or experimental drugs
against the nsp16(methyltransferase)/nsp10 protein complex
and, through MM/PBSA calculations, discovered that the
presence of nsp10 strengthens the ligand binding to nsp16. In
the repurposing against nsp16 involving 4200 drugs or
compounds, the best one predicted from MM-PBSA was
Carba-nicotinamide-adenine-dinucleotide.548 The potency of
hundreds of bioactive compounds to methyltransferase was
also studied via docking and MM/PBSA calculations.549,550

Moreover, El Hassab et al.551 designed a new methyltransferase
inhibitor AP-20 based on fragments and calculated the binding
affinity using MM/PBSA. Since the MMLFA-1/SARS-CoV-2
Orf7a complex contributes to SARS-CoV-2 infectivity and
pathogenicity, Ongaro et al.552 used MM/GBSA calculations
to study the interactions inside the MMLFA-1/SARS-CoV-2
Orf7a complex. Other SARS-CoV-2 targets under MM/
PB(GB)SA studies also include nsp1553 and nsp14.554
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Multiple Targets. Some researchers adopted MM/PB(GB)-
SA calculations to screen drugs or compounds against multiple
targets of SARS-CoV-2. Nunes et al.555 docked 24 approved
drugs to SARS-CoV-2 Mpro, PLpro, and the ADP ribose
phosphatases of nsp3, nsp9, nsp12, nsp15, and nsp16. The
MM/GBSA calculations were further performed on the top
three drugs from docking tests. 131 quinoline-based drugs
were targeted to Mpro, S protein RBD, PLpro, RdRp, and N
protein, and the best drug for each target was further evaluated
by MM/PBSA calculations.556 Famotidine was shown to have
a high binding affinity to PLpro in similar studies.557 Targeting
SARS-CoV-2 Mpro, S protein, RdRp, PLpro, nsp14, Mpro, N
protein, human ACE2, and TMPRSS2, Eweas et al.558 in silico
screened chloroquine, hydroxychloroquine, ivermectin, remde-
sivir, favipiravir, lopinavir, and camostat via docking. Their
docking simulations identified that ivermectin and remdesivir
were potent to all nine targets, and the MM/PBSA calculations
confirmed it. Targeting Mpro and PLpro, Jade et al.559

screened 4182 drugs and 321 other compounds through
ADMET and docking predictions. Many works aimed to
repurpose compounds from other sources to inhibit Mpro and
S protein. Panda et al.560 screened 640 compounds through
docking and MD simulations and identified that PC786 had
high docking scores to both S protein and Mpro. Moreover,
their MD simulations and MM/PBSA calculations revealed
that the binding of PC786 can change the conformation of the
S protein and weaken the S protein’s binding interactions to
ACE2. The MM/PBSA binding free energy was calculated on
five PLpro−compound and 6 Mpro−compound complexes.
Similarly, Naidoo et al.561 investigated the potency of
cyanobacterial metabolites against Mpro and S protein.
Thurakkal et al.562 predicted the binding affinities of tens of
organosulfur compounds to Mpro, S protein, PLpro, RdRp,
and helicase. The top six compounds were further investigated
by MM/PBSA. The repurposing potential of 34 bioactive
terpenes and their derivatives to Mpro and PLpro was also
predicted by docking and MM/PBSA calculations.563 Other
MM/PB(GB)SA-based drug repurposing works considering
two or more targets include studies in the literature.564−580

Natural compounds are another source of drug repurposing.
Targeting Mpro, PLpro, and RdRp, a collection of 14492
marine-derived natural bioactive compounds by the criteria of
Lipinski’s RO5, predicted ADMET properties, and docking
scores, the best 14 compounds were subjected to MM/PBSA
calculations.581 In a similar studying, Al-Sanea et al.582

performed docking simulations on about 30 strawberry and
ginger silver nanoparticles, and the top four were selected to be
studied by MM/GBSA calculations. In ref 583 56 licorice
major components and metabolites were docked to Mpro, S
protein RBD, PLpro, RdRp, nsp15, and human ACE2. MM/
GBSA calculations were performed on the top six compounds.
In the investigation of four compounds targeting four different
proteins in SARS-CoV-2, i.e., Mpro, S protein−ACE2 complex,
RdRp, and PLpro, through docking, MD simulations, and
MM/GBSA, it was found that AGP-3 had potency for all four
targets.584 In a collection of 100,000 natural compounds
against SARS-CoV-2 proteins, compounds were investigated
by MD simulations and MM/PBSA, reporting that Baicalin
was potent against RdRp, nsp4, and NendoU.585 Kar et al.586

studied Mpro, S protein, and RdRp. Their ligands were natural
products from Clerodendrum spp. After docking and rescoring
the top ones by MM/GBSA, these authors found taraxerol to
be effective to all three targets. Using docking and MM/GBSA

or MM/PBSA calculations, Alajmi et al.587 and Sasidharan et
al.588 evaluated the potency of around 40 compounds,
including some existing drugs and the protein azurin secreted
by the bacterium Pseudomonas aeruginosa as well as its derived
peptides, against Mpro, PLpro, and S protein. Prasanth et al.589

studied 48 isolated compounds from cinnamon by docking and
MD-simulation-based MM/PBSA calculations, suggesting that
the compounds tenufolin and pavetannin C1 were potent to
both Mpro and S protein. Other similar works about natural
products are reported in the literature.590−604

2.1.8. Density-Functional Theory (DFT) and Quantum
Mechanism (QM) Methods. Density-functional theory
(DFT) is utilized whenever the electronic structure is
important, which is the typical case for chemical reactions.
DFT is a computational quantum mechanics modeling method
widely used in computational physics, computational chem-
istry, and computational material science to investigate the
electronic structure of atoms, molecules, and condensed
phases.605−607 Using this theory, the properties of a many-
electron system are represented by functionals (functions of
another function) of the spatially dependent electron
density.605 Because of the development of DFT, Walter
Kohn won the Nobel Prize in Chemistry in 1998.608 DFT is
constructed on the total electronic charge density ρ(r) given as

Nr r r r r r r r r( ) d d ( , , ..., ) ( , , ..., )N N N2 2 2∫ ∫ρ = ··· Ψ* Ψ
(23)

of an N-electron problem, where ri are positions and Ψ(r, r2, ...,
rN) is the wave function satisfying the many-electron time-
independent Schrödinger equation. Here, Ψ* is the complex
conjugate of Ψ. DFT, as a successor of the Schrödinger
equation and the Thomas−Fermi model, studies a representa-
tive of the N-electron problem as a set of N one-electron
problems, whose foundations are the Hohenberg−Kohn and
Kohn−Sham theorems. For the Hohenberg−Kohn theorem, if
the density function ρ(r) of a quantum system is known at the
ground state ρ0, then the wave function is determined as Ψ0 =
Ψ[ρ0]. The Kohn−Sham equation for the orbitals φi(r) can be
written as
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Ç
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Here ℏ is the reduced Planck constant. The Kohn−Shan
potential is given as
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(25)

where Vext(r) is the external potential, the second term is the
Hartree term of the electron−electron Coulomb repulsion, and
Vxc[ρ(r)] is the exchange-correlation potential which is
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r
r

r
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( )
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xcρ
δ ρ

δρ
[ ] =

[ ]
(26)

where Exc is the exchange-correlation energy.
DFT calculations were employed to simulate the attack of

cysteine to covalent inhibitors by Nogara et al.,609 Madabeni et
al.,610 Wang et al.,611 and Shekh et al.612 For example, DFT
simulations by Nogara et al. and Madabeni et al. suggested the
mechanism of cysteine attacking, and the energy barrier of its
attacking to ebselen was around 30 kcal/mol. Many studies
applied DFT to predict electronic properties and chemical
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reactivity. For instance, via DFT calculations, Khan et al.613

suggested the electrophilicity ranking of their six isolated
compounds is apigenin > luteolin > diosmetin > quercetin >
spinacetin > eriodictoyl. Yadav et al.614 suggested the higher
reactivity of favipiravir toward Mpro since the presence of
electron donor and receptor groups in favipiravir displayed the
capability of forming a complex with the external target
molecule. Other similar studies include refs 443 and 615−632.
DFT calculations by Aitouna et al.633,634 indicated the
epoxidation reaction of parthenolide and himachalene
derivatives presented high chemoselectivity. This can explain
how parthenolide and himachalene derivatives form. More
studies used DFT to preoptimize the structures of com-
pounds.609,635−640 Additionally, the PM7 semiempirical
quantum-chemical method was applied to binding calculations
of Mpro,641,642 RdRp,643 PLpro, and S protein.642

2.1.9. Quantum Mechanics/Molecular Mechanics
(QM/MM). As illustrated in Figure 6b, the QM/MM approach
is a hybrid molecular simulation method that combines the
accuracy of QM and the speed of MM. For a biological system,
the computational region where the chemical process takes
place is treated at an appropriate level of QM,644 while the
remainder is described by a MM force field.645 This approach
can be used to study chemical processes in solution and
proteins. The Nobel Prize in Chemistry in 2013 was awarded
to Arieh Warshel and Michael Levitt for the introduction of
QM/MM. There are two different ways to calculate the energy
of the combined system. The subtractive scheme calculates the
energy of the entire system by using a molecular mechanics
force field added by the energy of the QM system and
subtracted by the MM energy of the QM system

V V V

V

(QM) (QM MM)

(QM)

QM/MM
sub QM MM

MM

= + +

− (27)

where VMM(QM) is the energy of the quantum mechanics
region using molecular mechanics. More widely, the additive
scheme is applied and given as

V V V V(QM) (MM) (QM/MM)QM/MM
add = + + (28)

where V(QM) is the QM energy of the QM region, V(MM) is
the MM energy in the molecular mechanics region, and
V(QM/MM) is the energy of interactions between the two
systems given as

V V V

V V V

(QM/MM) (QM/MM) (MM)

(MM) (QM/MM) (QM/MM)

bond angle

torsions elec VDW

= +

+ + +
(29)

where each term is calculated as a similar formula as eq 9 and
Vbond(QM/MM), Velec(QM/MM), and VVDW(QM/MM) are
calculated in both systems.
The covalent binding of PF-07321332 to Mpro was

elaborately investigated via QM/MM calculations, suggesting
the reaction energy barrier is −16.3 kcal/mol.646 Ramos-
Guzmań et al.647 and Arafet et al.648 also performed QM/MM-
based simulations to reveal the mechanism of the Michael
reaction to Mpro, and Ramos et al. suggested some strategies
to improve inhibitor design. Ramos et al.649 considered
aldehyde derivatives. The covalent binding of inhibitor PX-
12 and peptides to Mpro was simulated by the QM/MM
method.650−655 Regarding the S protein, the interactions of

human ACE2 and hydroxychloroquine to S protein RBD were
analyzed through QM/MM calculations.656,657

2.2. Mathematical Approaches

Various mathematical tools, including different geome-
tries,94,658−660 algebraic topology,219,661 and graph theory,662

have been applied to the modeling and prediction of
biomolecules.663 In this review, network analysis, the
flexibility−rigidity index, and topological data analysis are
discussed. These approaches become very powerful when
paired with deep learning.

2.2.1. Graph Network Analysis. A network is a graph in
which vertices represent objects and edges represent relation-
ships between objects. Networks can be used to represent
biological systems as sets of biological objects and interactions
between biological objects. For example, protein−protein
interactions (PPIs) give rise to both protein-scale networks
and atom-scale networks. In the protein-scale PPI networks,
proteins are regarded as vertices and protein−protein
interactions as edges. In the atom-scale PPI networks, such
as a RBD-ACE2 complex, the atoms in the RBD and ACE2 can
be regarded as vertices and the interactions between atoms in
the RBD and atoms in the ACE2 form edges. Other biological
systems, such as atomic interactions, drug−target interactions,
disease−protein associations, and drug−disease relations, can
also be represented as networks. Thanks to the recent
development of biological technologies, such as high-
throughput affinity purification combined with mass spectrom-
etry and the yeast two-hybrid assay, interactome data are
increasing rapidly, and a large number of interactome networks
can be constructed. Understanding biology from the
perspective of networks is important for many purposes. For
instance, the knowledge of a PPI network can shed light on the
putative roles of uncharacterized proteins. Graph theory is a
well-established mathematical field that is readily applicable to
the study of biological networks. In this section, we first
recapitulate some basic notions of graph theory; then we
introduce several network measures, which are proposed to
characterize the local or global properties of a network, such as
“irregularity”, “centrality”, and “communicability”.
An undirected simple graph (V, E) consists of a set V of

vertices and a set of edges E connecting pairs of vertices,
without self-loops or multiple edges between vertices. We
denote the number of vertices and the number of edges as nv
and ne, respectively. The edge connecting vertices i and j is
denoted as eij. A simple graph with V = {v1, ..., vn} can be
represented by its adjacency matrix A, where Aij is 1 if there is
an edge connecting vi and vj and is 0 otherwise. The degree of a
vertex i, sometimes denoted as ki, is the number of edges that
are incident to the vertex i. It is clear that the average degree
can be calculated by the formula 2ne/nv. A regular graph is a
graph where each vertex has the same degree. A walk of length
k is a series of vertices i1, i2, ..., ik+1 such that for all 1 ≤ l ≤ k
there is an edge connecting il and il+1. A path is a walk in which
all vertices are distinct. It is well-known that the (i, j) entry of
the kth power of the adjacency matrix, (Ak)ij, is equal to the
number of walks of length k starting at vertex i and ending at
vertex j. A graph is connected if there is a path between every
pair of two vertices, and a tree is an undirected graph in which
every pair of two vertices is connected by exactly one path.
Degree Heterogeneity. The degree heterogeneity664,665

measures how heterogeneous the degrees of vertices are.
Considering a star graph Sk, its only internal node has degree k
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and each of its external node has degree 1. The degree
heterogeneity of a graph such as Sk reflects its “irregularity”. It
is defined as

D k k( )h

e
i j

1/2 1/2 2

ij

∑= −
∈

− −

(30)

where is the set of edges, ki is the number of neighbors of
vertex i, and eij is the edge connecting vertices i and j. The
degree heterogeneity of a regular graph is 0, since each vertex
has the same degree. The degree heterogeneity of the star Sk is
k k k k(1 1/ ) 1 22− = + − .
Edge Density. The edge density is defined as

D
n

n n
2
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e

v v
=
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where ne is the number of edges and nv is the number of nodes.
For a complete network in which each pair of network vertices
is connected, the edge density is equal to one. A noncomplete
network has an edge density smaller than one. If ne ≈ (nv)

k

with 1 < k < 2, we say that this graph is dense. If ne ≈ (nv)
k

with k ≤ 1, we say that this graph is sparse.
Average Path Length. The average path length can be seen

as a measure of the efficiency of information transport and is
typically used to characterize the “small-worldness” of a
network.666 A network with shorter average path length
facilitates quicker transfer of information. Let d(i, j) denote the
shortest path length between vertices i and j, then the average
path length ⟨L⟩664 is defined as

L
n n

d i j
1

( 1)
( , )

v v i j
∑⟨ ⟩ =

− < (32)

Betweenness Centrality. If a vertex v falls on the shortest
paths between two vertices i and j, by control of the vertex v
one can control the transmission of information between
vertices i and j. The notion of the betweenness centrality
illustrates this potential.667 The betweenness centrality of a
vertex v is defined as a sum over all (unordered) pairs of
vertices i and j such that i ≠ v ≠ j

C
v( )

v
b

i v j

ij

ij
∑

σ

σ
=

≠ ≠ (33)

where σij is the number of shortest paths between vertices i and
j and σij(v) is the number of those paths that passes the vertex
v (v is not an end point). The probability that the vertex v falls
on a randomly chosen shortest path connecting vertices i and j

is
v( )ij

ij

σ

σ
. The average betweeness centrality is defined as the

average of betweenness centralities over all vertices.
Eigenvector Centrality. The eigenvector centrality664 takes

account of not only the shortest paths but also any path
connecting two vertices. Let Nl(v) be the number of walks of
length l that start at v and end elsewhere. If the given network
is not bipartite, one can define the eigenvector centrality of a
vertex
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( )v

e

l

l

j
n

l1
v

=
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which can be regarded as the ratio of the number of infinite
length walks starting at v over the number of all infinite length

walks. One can define the average eigenvector centrality as the
average over all vertices.
Subgraph Centrality. Let A be the adjacency matrix and G =

exp(A); then the subgraph centrality664,668 of the ith vertex is
defined as

C Gi
s

ii= (35)

The subgraph centrality is closely related to closed walks. To
see this, rewrite Gii as ∑l = 0

∞ (Al)ii/k!. As (A
l)ii is the number of

closed walks of length l starting and ending at the same ith
vertex, the subgraph centrality is indeed a weighted sum of
closed walks of all lengths starting and ending at the same
node, in which shorter closed walks are given more weight. To
get a global characterization of a network, one may also
consider the average subgraph centrality.
Communicability. There are many different ways to

measure the communicability of two vertices. Estrada and
Hatano669 proposed to define the communicability between
vertices i and j as Gij, which is indeed a weighted sum of walks
of all lengths starting at vertex i and ending at vertex j. This
definition of communicability is justified because communica-
tion between two vertices can take place through nonshortest
paths. Estrada and Hatano670 also defined the communicability
angle between the ith and jth vertices
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Taking the average over all pairs of vertices, one can define the
average communicability and the average communicability
angle. The average communicability angle evaluates the
efficiency of a network transmitting information between its
pairs of vertices with all possible paths.
Closeness Centrality. The closeness centrality671 measures

vertices’ connecting efficiency through the network. In a
connected graph, the closeness centrality of the ith vertex is
defined as

C
d i j
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( , )i
c
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=
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The sum ∑j≠id(i, j), also referred to as the farness of a vertex i,
is the sum of the shortest path distance to the ith vertex over all
nv − 1 reachable vertices. The normalized form of the closeness
centrality is given by n

d i j
1

( , )
v

j i

−
∑ ≠

. If a vertex has a larger closeness

centrality, it has a greater “centrality” in the sense of being
more independent of other vertices.667

Topological Coefficient. The topological coefficient672 Ci
t

measures the extent to which the ith vertex shares neighbors
with other vertices, which is defined as

C
J i j

o
( , )

i
t

i
=

⟨ ⟩
(38)

where J(i, j) is the number of joint neighbors of the ith and jth
vertices (plus one if there is an edge between i and j), oi is the
degree of the ith vertex, and ⟨J(i, j)⟩ is the average over all
vertices that share a neighbor with the ith vertex.

2.2.1.1. Network-Based Biomolecular Structure Analysis.
Using networks to analyze the structural similarities is
important for drug repurposing and understanding functional
mechanisms. Estrada applied the aforementioned network
measures to analyze the interaction networks between SARS-
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CoV-2 Mpro and various inhibitors.664 Chen et al.78 applied a
similar strategy to predict binding affinity changes induced by
mutations. A variety of studies using the network measures on
protein residue/atom networks followed the same
path.6,10,77,673−675 Moreover, Chen et al. employed the
network analysis of antibody−antigen complexes on Cα
atoms77 as illustrated in Figure 8. Lata and Akif676

implemented network analysis on 3CLpro from SARS-CoV
and SARS-CoV-2. Amamuddy et al.677 used five independent
criteria of network centrality to study the allosteric effects of
potential allosteric modulators for the SARS-CoV-2 3CL
protein. Focusing on the correlations between the RBD and
residues distant to it in the S protein, Ray et al.678 built a

protein graph connectivity network and calculated the
betweenness centrality. A modification of the average shortest
path length was used in ref 679. Saha et al.680 employed
various network measures to identify the spreader nodes in the
SARS-CoV-human protein−protein interaction network, hop-
ing to find possible lineage with the disease propagation
pattern of the COVID-19 pandemic.

2.2.2. Flexibility−Rigidity Index (FRI). The FRI is a
geometric graph-based method that utilizes weighted graphs to
model molecular interactions.187,681 The multiscale FRI,682 the
colored (i.e., element-specific) FRI,683 and their algebraic
graph counterpart186 have also been proposed. The atomic

Figure 8. Cα network analysis of three antibody−antigen complexes. Here, circle markers represent antigen (S protein RBD), and cube markers
represent antibody or ACE2. The PDB IDs of the three antibody−antigen complexes are 3D0G, 6M0J, and 6W41. The rows represent (a)
betweenness centrality, (b) eigencentrality, and (c) subgraph centrality.77 (d) Illustration of the S protein and ACE2 interaction. The RBD is
displayed in green, the ACE2 is given in pink, and mutation D614G is highlighted in red. (e) Difference of FRI of the S protein between the
network with wild type and the network with mutant type. (f) Difference of the subgraph centrality between the network with wild type and the
network with mutant type.10
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rigidity index at position ri is defined as a summation of all the
weighted edges around it:
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where rj is the position of the ith atom, wij is a weight, Nc′ is the
number of atoms in the neighborhood of ri, and η is a
characteristic scale. Element-specific rigidity683 and molecular
rigidity681 can be obtained by an appropriate collection of
atomic rigidity indices. The FRI has been applied to protein
and nucleic acid flexibility and fluctuation analysis681 and
protein−ligand binding affinity prediction.684 Protein−protein
interactions, such as the elasticity between antibody and
antigen, especially long-range impacts, were studied by
calculating the FRI of the network consisting of Cα atoms.
The FRI is an important feature for machine learning models
to predict the binding affinity changes on mutations685 and the
protein folding energy changes on mutations.686

Some studies applied the machine learning models based on
the FRI to study the SARS-CoV-2 proteins combined with
network analysis. Wang et al.10 calculated the FRI and
investigated the folding stability changes of the S protein
(see Figure 8a, e, and f) and other proteins caused by
mutations. The FRI-based binding affinity change between the
S protein and human ACE2 due to mutations was also
calculated by Chen et al. and Wang et al.10,77−79,687

2.2.3. Topological Data Analysis (TDA). Recent years
have witnessed rapid development in TDA and its applications
to a wide variety of scientific and engineering problems.689,690

The main workhorse of TDA is persistent homology,691,692 a
new branch of algebraic topology. This approach has been
applied to characterize biomolecular systems.661,693,694 More
powerful methods that provide simultaneous topological
persistence and spectral analysis have been pro-
posed.660,695−697 In TDA, molecular atoms can be treated as
a point cloud and a filtration of simplicial complexes can be
constructed. We first recall some basic notions of algebraic

topology. A simplicial complex is a finite collection of simplices
σ, where a k-simplex σk = [v0, ..., vk] is a convex hull of k + 1
points {v0, ..., vk} in

n (n ≥ k). A simplicial complex K is valid
if any face τ of a simplex σ in K is also in K, and the nonempty
intersection of any two simplices is a face for both. Given a
simplicial complex K, a k-chain is a finite formal sum of k-
simplices ∑iαiσi

k with coefficients in a ring (usually a field such
as 2 ). The set of all k-chains forms an abelian group Ck(K).
The boundary operator ∂k:Ck(K) → Ck−1(K) is a group
homomorphism defined by ∂kσ

k = ∑i = 0
k (−1)i[v0,...,v̂i,...,vk],

where [v0,...,v̂i,...,vk] is a (k − 1)-simplex excluding vi. A k-cycle
is a k-chain whose image is 0 under the boundary operator ∂k.
An important property of boundary operators is that ∂k−1∂k =
0, so we have the following chain complex
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and the kth homology group Hk is defined as Hk = Zk/Bk where
Zk = ker ∂k = {c ∈ Ck|∂kc = 0} and Bk = im ∂k+1 = {∂k+1c|c ∈
Ck+1}. The kth Betti number is defined by the rank of the kth
homology group Hk which counts the k-dimensional holes. In
particular, β0 = rank(H0) reflects the number of connected
components, β1 = rank(H1) reflects the number of loops, and
β2 = rank(H2) reveals the number of voids or cavities.
Together, the set of Betti numbers {β0, β1, β2, ...} indicates the
topology of a simplicial complex.
Persistent homology is devised to track the multiscale

topological information along a filtration.698 A filtration of
simplicial complex K is a nested sequence of subcomplexes
{Kt}t=t0,...,tm of K such that

K K K K KØ t t t tm0 1 2= ⊆ ⊆ ⊆ ··· ⊆ = (41)

Moreover, the inclusion map Xti ⊆ Xtj induces a homo-
morphism f k

ti,tj between homology groups Hk(K
ti)→ Hk(K

tj) for
each dimension k. The p-persistent kth homology group of Kt

is defined by

Figure 9. Illustration of persistent homology filtration. Reused with permission from ref 688. Copyright 2020 Anand et al. under Creative
Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/. (a) Simplicial complex at radius 1.2 has 0-
simplexes (black dots), 1-simplexes (red edges), 2-simplexes (yellow triangles), and 3-simplexes (purple tetrahedral). The barcode shows β0 and β1.
(b) Persistent homology filtration at radius 0.6, 0.8, and 1.2. (c) 0-, 1-, 2-, and 3-simplex. (d) Topological invariants of three examples.
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where Zk
t = ker ∂k

t and Bk
t + p = im ∂k+1

t+p . Intuitively, this
homology group records the k-dimensional homology classes
of Xt that are persistent at least until Xt+p. The birth and death
of homology classes can be encoded by a barcode, a set of
intervals. Given a molecule, a filtration can be constructed, and
hence, a barcode can be calculated. Feature vectors can be
constructed from barcodes for machine learning models.699

One can use the persistent barcode to distinguish the
randomness from the structure of the growing graphs. For
instance, as illustrated in Figure 9, a filtration was introduced
to a graph G to create multiple simplex complexes. We can
distinguish the topological differences among complexes along
filtration by analyzing the persistent barcode and Betti curves.
Since the first integration of persistent homology and

machine learning,700 topology-based approaches have found
much success in biomolecular modeling and predic-
tion.219,663,699,701 Combined with large datasets and machine
learning algorithms, TDA is a powerful tool for predicting
biomolecular properties such as protein−ligand binding
affinity219,699 and drug discovery.702 According to the
biomolecular properties, complexes are constructed as an
atomic-specific strategy or bipartition graph. For instance,
when studying the protein folding energy of the ACE2 and
SARS-CoV-2 S protein, one can use element-specific and/or
site-specific persistent homology to simplify the structural
complexity of the protein structure and encode vital biological
information into topological invariants.687,699 Wang et al.6

applied topological features to protein folding studies on the
energy changes on mutations of the SARS-CoV-2 nsp6 protein.
Moreover, in the complex formed in a bipartite graph, the
features of the protein−protein interaction can be studied
where the atoms of the antibody and antigen consist of two
disjointed and independent sets. Chen et al.77 used this idea to
predict the binding free energy changes on mutations of the
protein−protein interactions between the S protein and
antibodies. Nguyen et al.703 studied the potency and molecular
mechanism of the main protease inhibition from 137 crystal
structures by integrating mathematics, deep learning methods,
and applied persistent homology. Topological data analysis is
not only applied to studying protein−protein interactions.
Chen et al.10,78,79,687 further studied the mutations that
strengthened SARS-CoV-2 infectivity where persistent homol-
ogy plays a key role in analyzing the interactions between the S
protein and human ACE2. Moreover, Peŕez-Moraga et al.
applied TDA to identify the drug repurposing targeting SARS-
CoV-2 proteins (3CLpro, nsp15, and nsp12).704

2.3. Machine Learning

Machine learning (ML), including deep learning (DL), is a
transformative technique in artificial intelligence (AI). ML and
DL can be categorized into four major tasks, namely
regression, classification, clustering, and dimensionality reduc-
tion. The first two involve supervised learning using labeled
data, and the last two rely on unsupervised learning using
unlabeled data. All of these methods are widely used in
computational biology, computational chemistry, and compu-
tational biophysics.
2.3.1. Dimensionality Reduction. As raw data often exist

in high-dimensional space, dimensionality reduction techni-
ques can be applied to transform raw data into a low-
dimensional representation, making it easy for visualization
and analysis. Various dimensionality reduction algorithms can

be divided into two categories, namely matrix factorization and
neighbor graphs. The matrix factorization maintains the
pairwise distance among the data samples. Techniques such
as principal component analysis (PCA),705 multidimensional
scaling (MDS),706 linear autoencoder,707 Sammon mapping,708

latent Dirichlet allocation,709 non-negative matrix factoriza-
tion,710 etc. fall into this category. Neighbor graphs seek to
preserve the global distance among the data sample, which
includes Laplacian eigenmaps,711,712 Hessian eigenmaps,713

local tangent space alignment,714 Isomap,715 t-distributed
stochastic neighbor embedding (t-SNE),716,717 uniform
manifold approximation and projection (UMAP),718 etc. In
the following, popular methods, such as PCA, t-SNE, and
UMAP, are briefly introduced.
PCA. PCA705 aims to find an orthogonal linear trans-

formation such that the projection of transformed data on the
first coordinate has the largest variance, the projection on the
second coordinate has the second largest variance, and so on.
We can take the first several coordinates in the new coordinate
system to get a low-dimensional projection of the original data.
t-SNE. t-SNE716,717 is a nonlinear dimensionality reduction

technique. It first calculates the pairwise distribution over pairs
of high-dimensional data such that a pair of near data points is
assigned with a higher probability, while a pair of dissimilar
points is assigned with a lower probability. Second, a similar
probability distribution over the low-dimensional data is
calculated as well. Last, the minimization of the Kullback−
Leibler (KL) divergence is carried out between the two
distributions to map the high-dimensional data to a low-
dimensional space appropriately.
UMAP. Another nonlinear dimensionality reduction techni-

que is UMAP,718 which is computationally faster than t-SNE.
UMAP first constructs a weighted graph from the original data,
where edge weights represent distances and then projects the
weighted graph to low-dimensional space. UMAP is motivated
by category theory and Riemannian geometry.
Many dimensionality reduction techniques have been

applied in SARS-CoV-2 research. Some research employed
PCA to analyze the dynamics of proteins. For instance, Islam
et al. examined PCA as a part of the techniques to seek the best
candidates that can be used as potent inhibitors against the
main protease of SARS-CoV-2. They first selected candidates
with strong binding affinities and interactions between the
main protease and the phytochemicals with AutoDock Vina
and GOLD. Next, MD simulations are applied to validate five
top-ranked inhibitors. Among them, three inhibitors, baicalin,
cyanidin 3-glucoside, and a-ketoamide-11r, are selected by
applying PCA, which has structural similarity with the apo-
form of the main protease.719 In addition, PCA was also used
to access the chemical space of a given SARS-CoV-2 data set.
For example, PCA was set along the SARS-CoV-2 molecular
fingerprint descriptors to show that the SARS-CoV-2 chemical
space is well distributed with inactive and active molecules.720

Moreover, PCA was also applied to study the motions of the
protein during the binding of the ligand by Prasad et al.565 In
the initial process of the SARS-CoV-2 entering the host cell,
TMPRSS2 and Cathepsins B/L activate the S protein and
enable SARS-CoV-2 to invade the host cell through two
independent pathways. Therefore, seeking a simultaneous
target to both entry pathways would be a good idea to block
the virus from entering host cells. Prasad et al. applied PCA
techniques to study the significant motions of the drug
candidates during the binding of TMPRSS2 and Cathepsins B/
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L. The results showed that cyclosporin A (CsA), one of the
drug candidates, is quite stable with TMPRSS2 in the complex
when the dynamics of this structural conformation is increased.
A similar pattern can also be observed in the cathepsins L
(CTSL)-CsA complex. Furthermore, due to the capacity of
PCA to reduce the dimensionality to maximize the data set
variance, PCA is used as a metric for analyzing conformational
the diversity from Gaussian accelerated MD (GaMD) and
conventional MD simulations of the SARS-CoV-2 main
protease by Sztain et al.146

Dimensionality reduction techniques are often coupled with
K-means clustering. Gussow et al.721 tried to identify genomic
determinants of coronavirus that are related to high case
fatality rates (CFRs). They performed multiple sequence
alignment for 944 human coronavirus genomes and recoded
aligned sequences as sequences consisting of 0 and 1. Then
they applied PCA and t-SNE on recoded aligned sequences
and performed K-means clustering, identifying 11 regions of
nucleotide alignments as predictive of the high CFRs of
coronaviruses.
UMAP is often used for visualizing gene expression data

(e.g., refs 722 and 723). Zhang et al.723 tried to identify the
susceptible cell types and potential infection routes of SARS-
CoV-2, since the coexpression of ACE2 and TMPRSS2 is
critical for viral entry. Therefore, they analyzed five data sets
with single-cell transcriptomes of human tissues to study the
coexpression pattern of ACE2 and TMPRSS2 in five different
cell types, consisting of esophageal cells, gastric mucosa cells,
ileal cells, colon cells, and lung cells. First, UMAP is applied to
get the landscape of five different types of cells. Next, the
expression of ACE2 (blue) and TMPRSS2 (red) was marked
on the UMAP plots. Meanwhile, the UMAP plots were merged
as well to show the coexpression of ACE2 and TMPRSS2.
Such single-cell analysis indicated that ACE2 and TMPRSS2
may have coexpressed not only in lung alveolar type 2 cells but
also in upper epithelial and gland cells from esophageal and
absorptive enterocytes from the ileum and colon.
Moreover, a rich reference data set that describes the

transcriptional landscape at the single-cell level of the lung and
subsegmental bronchial in a total of 16 individuals was
established by Lukassen et al.724 The gene expression patterns
of ACE2, TMPRSS2, and FURIN in the lung can also be
observed by UMAP (see Figure 10a). Furthermore, a work by
Ravindra et al. applied UMAP to analyze the gene expression
levels of the ACE2, CTSL, TMPRSS2, and TMPRSS4 protease
of human bronchial epithelial cell (HBEC) samples as
illustrated in Figure 10b and c.
2.3.2. Linear Regression. Linear regression is one of the

basic algorithms in machine learning and can be used to solve
the regression problem. Assume the training set is

y yx x( , ) ,i i i
m

i i
n

1 { | ∈ ∈ }= . Here, n is the number of samples,
and m represents the number of features. Then, the prediction
corresponding to xi is defined as

y y bx w x( )i i
T

î = ̂ = + (43)

where w m∈ represents the weights, b ∈ is the bias, and
wT represents the transpose of w. The loss function of the
linear regression model is

L b
n

y yw( , )
1

2
( )

i

n

i i
1

2∑= ̂ −
= (44)

The aim of the linear regression is to minimize the loss
function, which is demonstrated as eq 45.

L b
n

y ywargmin ( , ) argmin
1

2
( )

b b i

n

i i
w w, , 1

2∑= ̂ −
= (45)

Additionally, a regularization term can also be taken into
account in the case of overfitting:

L b
n

y yw wargmin ( , ) argmin
1

2
( )

b b i

n

i i
w w, , 1

2
2∑ λ= ̂ − +

=
(46)

where λ represents a penalty constant.
Applications are involved in applying linear regression to

calculate the correlation coefficient and predict different types
of dependent variable values, where most applications study
the experimental data. As for theoretical analysis, studies focus
on implementations of QSAR, which will be discussed later. To
study the SARS-CoV-2 fatality rates, the CFRs of SARS-CoV-2
variants were compared by linear regression of worldwide data
between wild-type and mutant-type virus on the S protein,
resulting in G614 being shown to be a more pathogenic
strain.206 In the study of gene evolution of SARS-CoV-2, linear
regression was applied to the line between the number of viral
variants and the gene length, suggesting that the mutation
frequency was proportional to the length of the gene.726 A
regression model was designed and related the the
experimental binding affinity for antibodies by applying
structural features, where several mutations at the S binding
motif were identified.727 Moreover, a linear regression model
was applied by Israel et al. to quantify the association between

Figure 10. (a) Expression level of ACE2 in the lung plotted on top of
the UMAP coordinates. Expression level of TMPRSS2 in the lung
plotted on top of the UMAP coordinates. Expression level of FURIN
in the lung plotted on top of the UMAP coordinates. Reproduced
with permission from ref 724. Copyright 2020 Lukassen et al. (b and
c) UMAP visualization of HBEC samples, colored by expression
(normalized and square-root transformed counts) of the ACE2
receptor, CTSL, TMPRSS2, and TMPRSS4 proteases. Reproduced
with permission from ref 725. Copyright 2021 Ravindra et al. Under
Creative Commons Attribution 4.0 International License https://
creativecommons.org/licenses/by/4.0/.
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the logarithm of antibody levels and the elapsed time, in both
fully vaccinated and convalescent individuals.728 This study
suggests that individuals who received the Pfizer-BioNTech
mRNA vaccine had higher initial antibody levels but a much
faster exponential decrease compared to patients who had been
infected by SARS-CoV-2.
2.3.3. Logistic Regression. Logistic regression is an

algorithm designed for solving classification problems. Assume
the training set is y yx x( , ) ,i i i

m
i i

n
1 { | ∈ ∈ }= . Here, n is the

number of samples, m represents the number of features, and
 represents different categories. Then, the prediction of the
logistic regression corresponding to the point xi is

y
e

1

1i bw xT
i

̂ =
+ − + (47)

where w m∈ represents the weights, b ∈ is the bias, and
wT represents the transpose of w. When yi ∈ [0, 1], the loss
function can be defined by

L b
n

y y y yw( , )
1

log( ) (1 ) log(1 )
i

n

i i i i
1

∑= − [− ̂ − − − ̂ ]
=

(48)

Ayouba et al.729 used logistic regression to represent the
dynamics of the immunoglobulin G (IgG) response to the S
protein, N protein, or both antigens at the same time since
onset of symptoms. In addition, researchers stated that the
publicly shared CD8+ (Cytotoxic T cells with CD8 surface
protein) might be used as a potential biomarker of SARS-CoV-
2 infection at high specificity and sensitivity by applying the
logistic regression.730 In addition, only subtle differences were
observed from the initial MD simulations of the two RBD-
ACE2 complexes by Pavlova et al. Later, logistic regression was
used to successfully identify the individual residues with the
most distinctive ACE2 interactions, many of which have been
highlighted in previous experimental studies.731

2.3.4. k-Nearest Neighbors. The k-nearest neighbors
algorithm (k-NN) is a nonparametric technique proposed by

Thomas Cover and P. Hart in 1967.732 k-NN can be used for
solving both regression and classification problems,733 and it is
sensitive to the local structure of the data. The flow chart of the
k-NN algorithm can be found in Figure 11. The features of the
training set are {xi}i=1

n with xi
m∈ , k shows the number of the

nearest neighbors, and x m∈ is a feature representation of
the training set. Different distance metrics can be employed in
the k-NN algorithm, such as Euclidean distance, Manhattan
distance, Minkowski distance, Chebyshev distance, natural log
distance, generalized exponential distance, generalized Lor-
entzian distance, Canberra distance, quadratic distance, and
Mahalanobis distance.
The classifier can be built by using the k-NN algorithm.

Setting classifiers as k-NN models, an automated system can
distinguish the SARS-CoV-2 genome from the SARS-CoV
genome and MERS genome by using the genomic sequences
from the National Center for Biotechnology Information
(NCBI) GenBank for accelerating the diagnosis process and
improving the accuracy of disease detection.734 Moreover,
AllerTOP v.2.0 classified allergens and nonallergens based on
the k-NN method with an accuracy of 88.7%.735 Furthermore,
the k-NN algorithm has been employed to classify the human
protein sequences of COVID-19 according to country.736

Moreover, k-NN was also applied on the transcriptomics data.
The recently reported transcriptomics data of upper airway
tissue with acute respiratory illnesses is integrated with some
machine learning algorithms such as the k-NN algorithm to
identify effective qualitative biomarkers and quantitative rules
for the distinction of SARS-CoV-2 infection from other
infectious diseases.737 Furthermore, with the implementation
of the k-NN algorithm, as well as the GRU (gated recurrent
unit) neural networks and LSTM (long short-term memory)
autoencoder models by Liang et al.,738 the analysis of the
nanosecond backbone root-mean-square deviation (RMSD) of
the S protein assisted in the prediction of the long-term
properties of SARS-CoV-2 S proteins.

Figure 11. Flow chart of the k-NN algorithm. The features of the training set are {xi}i=1
n with xi

m∈ , k shows the number of nearest neighbors,
and x m∈ is a feature representation of the training set.
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2.3.5. K-Means Clustering. K-means clustering is an
unsupervised learning algorithm, aiming to partition a set of
observations into K subsets or clusters. It typically begins with
selecting K observations as centroids of clusters and assigning
observations to clusters according to their distances with
centroids. Then, the algorithm recursively updates centroids by
minimizing the within-cluster sum of squares.
In the study of SARS-CoV-2, a common method for

discovering evolution patterns and transmission pathways is to
cluster mutations. Wang et al. retrieved 31,421 genome
samples from GISAID and rearranged them according to the
reference SARS-CoV-2 genome.9 Then they computed the
Jaccard distance matrix (Jaccard distance measures the
dissimilarity between two genomes) and clustered genomes
using the Jaccard distance matrix. In this work, the authors also
analyzed how mutations would impact the efficacy of certain
COVID-19 diagnostic kits. As directly applying K-means
clustering is often time-consuming, it is often coupled with
dimensionality reduction techniques. In refs 12 and 739 the
authors followed a similar method as in ref 9 and used PCA or
UMAP to reduce the dimensionality of the Jaccard distance
matrix before applying K-means clustering. K-means clustering
can also be found in works such as ref 721. Additionally, in ref
740 by Assis et al., the authors first constructed a coronavirus
antigen microarray (COVAM). Such a model included 11
SARS-CoV-2, 5 SARS1, 5 MERS, and 12 seasonal coronavirus
recombinant proteins, which could cluster COVID-19
convalescent plasma (CCP) based on their antibody reactivity
patterns against 11 SARS-CoV-2 antigens. Then, K-means
analysis, gap statistics, and hierarchical clustering were applied,
revealing three main clusters with distinct reactivity intensities
and patterns as illustrated in Figure 12.
Moreover, K-means clustering was also used to select

conformations that represent the overall conformational
heterogeneity of molecular dynamics simulation data. For
instance, a team led by Albert Y. Lau developed a machine
learning algorithm called TACTICS (trajectory-based analysis
of conformations to identify cryptic sites), aiming to address
the difficulties in seeking druggable sites.741 First, by applying
the K-means clustering algorithm in TACTICS on multiple

molecular dynamics simulation data, a small number of
conformations was found. Next, such conformational data
was integrated into a random forest model in TACTICS to
identify possible druggable sites in each conformation based on
its protein motion and geometry. Last, the scores of potential
binding pockets were given based on the fragment docking
analysis. This approach provided a way to predict the locations
of binding sites that cannot be viewed in the experimentally
determined structures.

2.3.6. Support Vector Machine. The support vector
machine (SVM) was developed by Vapnik and his colleagues
and can be used for both classification and regression
analysis.742,743 For the classification problem, assume the
training set is y yx x( , ) , 1, 1i i i

m
i i

n
1{ | ∈ ∈ {− }}= . The pre-

diction of the SVM at point xi will be ŷ = wTxi + b. Here,
w m∈ is the weights and b is the bias. If the training set is
linearly separable, the aim is to minimize ∥w∥ subject to
yi(w

Txi − b) ≥ 1. If the training set is not linearly separable,
then the hinge loss function max(0, 1 − yi(w

Txi − b)) will be
involved. The aim of the SVM is to minimize

n
y bw w x

1
max(0, 1 ( ))

i

n

i i
1

T∑λ + − −
= (49)

where λ is the regularization term (a.k.a. penalty). For the
regression problem, the aim is to minimize ∥w∥ subject to |yi −
⟨wT, xi⟩ − b| ≤ ϵ.
The SVM mentioned above is a linear classifier. To design a

nonlinear classifier, the kernel trick is employed to maximize
margin hyperplanes. The feature of the kernel SVM will be
Φ(x, z), where the commonly used kernels are the linear kernel
Φ(x, z) = xTz, the polynomial kernel defined by Φ(x,z) =
(αxTz + r)d, the radial basis function kernel (RBF) Φ(x,z) =

e−(∥x−z∥/σ)
μ

, and the sigmoid kernel denoted as Φ(x,z) = 1/(1 +

e−γx
Tz), where r, α, σ, γ, and μ are constants.
There is a large number of SVM applications on SARS-CoV-

2, and some of these focus on the biomolecular level and are
summarized as follows. A collection of 100,000 FDA-registered
chemicals and approved drugs, as well as about 14 million

Figure 12. Group 1 cluster analysis and PCA demonstrate two subgroups. Reproduced with permission from ref 740. Copyright 2021 Assis et al.
under Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/. (a) Reactivity to the SARS-CoV-2
antigens. Samples were clustered using hierarchical clustering analysis. (b) Bar plot of the mean reactivity and the standard error of each cluster to
each individual SARS-CoV-2 antigen. (c) Distribution of the samples that were clustered into three groups by PCA.
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other purchasable chemicals against multiple SARS-CoV-2
targets, was screened for drug repurposing,744 where SVM was
applied for identifying the top features. Additionally, Dutta et
al.745 predicted a novel peptide analog of the S protein using
SVM models implemented by the AVPred antiviral peptide
prediction server.
The SVM was applied to identify inhibitors for Mpro as well.

Mekni et al.746 applied the SVM on a data set with two million
commercially available compounds to classify two hundred
novel chemotypes that are potentially active against the viral
protease. Sun et al.747 implemented a hybrid support vector
machine classification model to find the viral entry inhibitors
using a collection of publicly available SARS-CoV-2
pseudotyped particle entry assay repurposing screen data. An
SVM-based Web server called CellPDD was applied to
determine the cell penetrating peptides (CPPs) in the
proteome of SARS-CoV-2, such as S protein, M glycoprotein,
N phosphoprotein, E protein, ORF1ab polyprotein, ORF3a
protein, ORF6 protein, ORF7a protein, ORF8 protein, and
ORF10 protein. The results showed that CPPs were not found
in E protein, one CPP was identified in ORF6, and one CPP
was primarily found in the proteome of ORF1ab. Such work
may be valuable to some studies in the nuclear localization
sequence (NLS) for vaccine development or drug discovery.748

2.3.7. Decision Trees, Random Forest, and Gradient
Boosting Decision Trees. The decision tree (DT) method is
a basic ML method, which is used to perform both
classification and regression models by representing the
attribute of the data using a flow-chart-like structure. As the
fundamental architecture of tree structure methods, decision
trees are further developed to a series of ensemble methods,
such as the random forest method, extremely randomized tree
method, AdaBoost methods, and the gradient boosting
decision tree method. Among them, random forest and
gradient boosting decision trees are widely applied. Random
forest (RF)749 is an ensemble learning method, which is
designed to reduce the overfitting in the original decision trees.
Both classification and regression problems are suitable for
random forest models. Gradient boosting decision tree
(GBDT) is a machine learning technique for regression and
classification problems, which produces a prediction model in
the form of an ensemble of decision trees.750 This ensemble of
decision trees is built in a stagewise fashion like other boosting
methods. That is, algorithms optimize a cost function over
function space by choosing a function that points in the
negative gradient direction iteratively. These methods can be
applied using packages such as scikit-learn in Python751 or R
packages.749

In applications, DT, RF, and GBDT were used commonly in
the diagnosis of COVID-19 or the analysis of virus spreading.
In this review, we focus on molecule-based studies. Decision
trees and the ensemble methods can handle the small-size data
set well and, therefore, were implemented widely at the early
stage of the SARS-CoV-2 pandemic, when databases were not
well-established. Investigations applying neural networks on
large databases are booming and will be introduced in the next
section. In ref 752 the authors used GBDT to predict which
proteins would likely make up an effective vaccine for COVID-
19. A GBDT model repurposed 8565 approved or
experimental drugs targeting Mpro, suggesting that 20 FDA-
approved drugs could be effective.753 Wang et al.6 used
topology-based features and GBDT models to analyze the nsp6
protein stability upon mutation. Bocci et al.754 constructed a

machine learning platform to estimate anti-SARS-CoV-2
activities, where a total of 22 feature types are created
according to chemical and biophysical information such as
topological fingerprints, molecular weights, etc. Another RF
classification was conducted for geographic-specific SARS-
CoV-2 mutations using genetic sequences.755 In addition, an
RF classifier was applied to the analysis of multiple isotype-
specific responses to identify infected individuals.756 Rola et
al.757 studied different docking protocols and applied
structures from 2D and 3D at the molecular mechanics level
as features for the random forest for docking studies of the
SARS-CoV-2 S protein binding to ACE2. RF models were also
applied to identify SARS-CoV-2 drug inhibitors and antibodies
for SARS-CoV-2 S protein and N protein.758,759

2.3.8. Artificial Neural Network (ANN). ANN or deep
neural network (DNN) is a ML model inspired by biological
neural networks that constitute animal brains.760 ANN can be
viewed as a weighted directed graph in which artificial neurons
can be considered as nodes and weights can be considered as
the links between input and output nodes. ANN is designed for
both regression and classification problems. We assume the
training set is x y x y( , ) ,i i i

m
i

l
i
n

1 { | ∈ ∈ }= . Here, n is the
number of samples, m represents the number of features, and
l ∈ shows the number of classes. If l = 1, then the training
set is designed for the regression problem. If l > 1, then we say
the ANN model is designed for a classification problem. There
are two main procedures in the ANN algorithm, the feed-
forward the back-propagation procedures. Assume xi

m∈ is a
feature representation in the training set; then the feed-forward
starts from the input layer to the first hidden layer that is
defined as

fz W x b( )T
i1 1 1= + (50)

where W m h
1

1∈ × represents the weights from the input layer

to the first hidden layer, b h
1

1∈ represents the bias from the
input layer to the first hidden layer. Here h1 is the number of
the neurons in the first hidden layer and function f represents
the activation functions such as the ReLu or Sigmoid function.
Next, from the first hidden layer to the second hidden layer, a
similar function is defined as

fz W z b( )T
2 2 1 2= + (51)

where W h h
2

1 2∈ × and b h
2

2∈ . Here, h2 is the number of
neurons in the second hidden layer. A similar procedure goes
until it gets to the output layer. The predictor from the last
hidden layer (the jth hidden layer) to the output layer is

y z W z bi j j
T

j j1= = +̂ + (52)

where Wj
h lj∈ × , bj

l∈ , and hj is the number of neurons in
the last hidden layer in the ANN. The cross-entropy loss
describes the cost function, which is defined as

L y ylog( )
i

n

i i
1

∑= − ̂
= (53)

The ANN algorithm obtains the prediction via the feed-
forward procedure and then minimizes the cross-entropy loss
through the back-propagation procedure. The back-propaga-
tion procedure applies the loss function evaluated at the output
layer and propagates it back through the network to update the
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weights and bias. In the calculation of the gradient for back-
propagation, the stochastic gradient descent (SGD) with
momentum method is one of the most popular approaches
which evaluates a small part of the training data and
contributes to the next iteration with different weights. The
process of the SGD with momentum can be expressed as

LV V W b

W W V

( , )

,

i i i i

i i i

W1

1

i
β η= + ∇

= −
−

+ (54)

where η is the learning rate and β ∈ [0, 1] is a scalar coefficient
for the momentum. Fully connected layers inducing a large
number of degrees of freedom cause an overfitting issue in the
training process. The dropout technique can prevent the
network overfitting,761 which randomly sets partial hidden
units zero values to their connected neurons in the next layer.
ANN has numerous applications in molecular biology.762 For
example, deep learning methods were used to predict the
mutation-induced changes of protein stability,763 protein−
ligand binding affinity,219 and protein−protein binding
affinity.685

Two directions of ANN/DNN application on SARS-CoV-2
are studying the infectivity of SARS-CoV-2 and the efficacy of
SARS-CoV-2 antibodies and repurposing existing drugs and
compounds or even generating new ones to treat SARS-CoV-2.
The former focuses on the binding energy of protein−protein
interactions or protein−ligand interactions. Chen et al. applied
a GBDT and neural network-integrated method to calculate
the BFE changes between SARS-CoV-2 S protein- and ACE2-
induced by mutations.78 Assuming that SARS-CoV-2 in-
fectivity is proportional to the BFE of S protein and ACE2,

one can quantitatively predict mutation-induced impacts on
the infectivity of the SARS-CoV-2 virus. Similar work can be
found to study the mutation impacts on the efficacy of SARS-
CoV-2 antibodies.764 Moreover, considering the spreading of
SARS-CoV-2 variants, Wang et al.79,765 applied the DNN
model results about BFE changes induced by mutations of
bindings of SARS-CoV-2 S protein and antibodies and
discovered the escape mutations and emerging vaccine-
breakthrough variants. A deep docking (DD) model provided
a fast prediction of docking scores from Glide or any other
docking program, hence, enabling structure-based virtual
screening of billions of purchasable molecules in a short
time.766 The DD model relies on a deep neural network
trained with docking scores of small random samples of
molecules extracted from a large database to predict the scores
of remaining molecules. A deep neural network method was
developed and validated by using a docking algorithm on
existing drugs for drug repurposing.767 A pretrained deep
learning-based drug−target interaction model called molecule
transformer−drug target interaction (MT-DTI) identified
commercially available drugs that can act on viral proteins of
SARS-CoV-2.768 Another deep neural network model was
designed to find the protein−ligand interactions for drug
repurposing.769 With a deep neural network model, 33
potential compounds were identified as ideal inhibitors against
Mpro,366 as well as a similar work for SARS-CoV-2
inhibitors.770 Moreover, Izumi et al.771 used the FASTA file
for a deep neural network to predict sequence-based super
secondary structure codes. Furthermore, to identify essential
physicochemical and structural characters for SARS-CoV-2
Mpro inhibition, a nonlinear QSAR model assisted by ANN

Figure 13. Structure of ComboNet. ComboNet consists of two networks: a DTI and a target−disease association network. Reused with permission
from the authors.773 Copyright 2021 Jin at el. under Creative Commons Attribution 4.0 International License https://creativecommons.org/
licenses/by/4.0/. (a) Workflow of ComnoNet for single-drug synergy. First, a single drug is fed into the DTI network to get its molecular
representation zA. Then, such a molecular representation will be the input of the target−disease association network, and its output will be the
predicted antiviral effect of a single drug. (b) Workflow of ComnoNet for drug combination synergy. First, drugs will be fed into the DTI network
to get their molecular representations zA and zB. Then, the combination of such molecular representations zAB, as well as zA and zB, will be fed into
the target−disease association network to get the predicted antiviral effect of a combination of drugs.
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and SVM was designed with 69 structurally diverse chemicals
with potential SARS-CoV-2 Mpro inhibitory property as
descriptors.772 Furthermore, ComboNet was designed to
predict (1) the interaction between a drug and multiple
biological targets, (2) the intrinsic antiviral activity of a drug,
and (3) the synergy of drugs.773 ComnoNet is composed of
two subnetworks: a drug−target interaction (DTI) and a
target−disease association network, which enabled an effective
in silico search for synergistic combinations against SARS-
CoV-2 (see Figure 13).
2.3.9. Convolutional Neural Network (CNN). CNN774

is a specialized type of neural network model originally
designed to analyze visual imagery, but it can also be applied to
many areas. Since the first successful CNN was developed in

the late 1990s, CNN has achieved much success in image and
video recognition, natural language processing, etc. CNN has
had success in biophysics such as protein structure prediction
and protein−ligand binding.219,699 The core of CNN is the
convolutional layer where its name comes from (see Figure
14). In the context of CNN, convolution is a linear operation
that involves the multiplication of a set of weights with the
input. This multiplication is always called a filter or a kernel.
Using a filter smaller than the input is intentional as it allows
the same filter to be multiplied by the input array multiple
times at different points on the input. Specifically, the filter is
applied systematically to each overlapping part or filter-sized
patch of the input data, left to right and top to bottom, which

Figure 14. Structure of 2D CNN. The feature extraction process includes multiple convolutional layers and pooling layers. The convolutional layer
extracts the local features of the initial input, and the average pooling layer increases the translational invariances of the network and reduces the
parameters that need to be trained. The output of the last pooling layer is a 2D array. Next, the flattened layer reshapes a 2D array to a 1D array to
feed the feature into a fully connected layer. Last, the integrated information will be fed into a regressor for the final prediction.

Figure 15. 3D alignment of the available unique 3D structures of SARS-CoV-2 S protein RBD in binding complexes with 19 antibodies as well as
ACE2. (a) ACE2 (6XDG775), CT-P59 (7CM4776), and CB6 (7C01777). (b) C135 (7K8Z778), C110 (7K8 V778), REGN10933 (6XDG779), and
REGN10987 (6XDG779). (c) C119 (7K8W778), C144 (7K90778), and C121 (7K8Y778). (d) LY-CoV481 (7KMI780), LY-CoV555 (7KMG780),
and LY-CoV488 (7KMH780). (e) C002 (7K8T778), C104 (7K8U778), C105 (6XCM778), and C102 (7K8M778). (f) S309 (6WPS781), AZD1061
(7L7E782), and ACD8895 (7L7E782).
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allows the filter an opportunity to discover that feature
anywhere in the input.
In the antibody and vaccine research, algebraic-topology-

based features were used to build a CNN-GBT hybrid model
for predicting mutation-induced binding affinity change,
investigating the impact of S protein mutations on the
ACE210,78 and 27 antibodies (see Figure 15),77 as well as
suggesting some highly risky ones to vaccine design.221 In the
inhibitor research, Nguyen et al.703 used algebraic-topology-
based features and CNN models to predict the potency of
ligands from the 137 crystal structures of Mpro. Critical
assessment of protein structure prediction (CASP) also proved
a domain for the application of powerful CNN methods in
protein structure prediction. For example, CNN-based
AlphaFold by Google DeepMind obtained the highest accuracy
in CASP13.783,784 During this epidemic, DeepMind applied the
AlphaFold to predict the 3D structures of SARS-CoV-2 Mpro,
PLpro, nsp2, nsp4, and nsp6.39 Meanwhile, the CNN-based C-
I-TASSER algorithm developed by the Zhang lab was
implemented to predict as many as 24 SARS-CoV-2
proteins.785 Yang et al.786 implemented the CNN model on
secondary structure information with other biophysics proper-
ties to construct a multiepitope vaccine. Lastly, the graph
convolutional neural network is considered as one of the graph
neural network (GNN) variants,787 which applied convolu-
tional ideas on a graph as the network structure and is a

recursive direct-contacting aggregation algorithm.788 In ref 789
Haneczok and Delijewski applied the graph convolutional
neural network to study the potential SARS-CoV-2 Mpro
inhibitors.

2.3.10. Natural Language Processing (NLP) Methods.
The recurrent neural network (RNN) (see Figure 16a) is a
class of artificial neural networks where connections between
nodes form a directed graph along a temporal sequence,790

which allows it to exhibit temporal dynamic behavior in the
data. Derived from the feed-forward neural network, RNN can
use its internal state (memory) to process variable-length
sequences of inputs. RNN was originally designed for language
processing tasks, but it can also be applied to other
circumstances, such as molecular sequence data.
The long short-term memory (LSTM) shown in Figure 16b

and the gated recurrent unit (GRU) in Figure 16c are two
popular variants of RNN. LSTM791 is designed to avoid the
vanishing gradient problem and is normally augmented by
recurrent gates called “forget gates”, and so errors can flow
backward through unlimited numbers of virtual layers unfolded
in space. GRU is a gating mechanism in recurrent neural
networks introduced in 2014.792 Its performance was found to
be similar to that of LSTM. However, as it lacks an output
gate, its parameters are fewer than LSTM, so it is easier and
faster to train.

Figure 16. (a) Workflow of a RNN cell. Here, t represents an object at time-step t. xt, yt, and at denote the input x, output y, and activation at time-
step t, respectively. ŷt represents the prediction at time-step t. (b) Workflow of a LSTM cell. t represents an object at time-step t. xt, yt, at, and ct
denote the input x, output y, activation, and cell state at time-step t, respectively. y ̂t represents the prediction at time-step t. ft, ut, ot, ct, and ct̃ denote
the forget gate state, update gate state, output gate state, cell state, and previous cell state at time-step t. σ is the activation function such as tanh
function. (c) Workflow of a GRU cell. Here, t represents an object at time-step t. xt, yt, and at denote the input x, output y, and activation state at
time-step t, respectively. y ̂t represents the prediction at time-step t. rt, ot, and ut denote the reset gate state, output gate state, and update gate state
at time-step t. (d) Illustration of the generative network complex.793 SMILES strings are encoded into latent vector space through a gated recurrent
neural network (GRU)-based encoder.
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Their application to SARS-CoV-2 includes the following:
Hofmarcher et al.770 utilized “ChemAI” to screen and rank
around one billion molecules from the ZINC database for
favorable effects against SARS-CoV-2. In more detail, the
network is of the type SMILES LSTM.794 Bung et al.366

employed RNN-based generative and predictive models for de
novo design of new small molecules capable of inhibiting
SARS-CoV-2 Mpro.
COVID-DeepPredictor is another work using long short-

term memory as a recurrent neural network to identify
unknown sequences of virus pathogens. Hie et al.795 designed a
bidirectional LSTM (BiLSTM) to predict structural escape
patterns of influenza hemagglutinin, HIV-1 envelope glyco-
protein (HIV Env), and SARS-CoV-2 S proteins.
2.3.11. Autoencoder and Transformer. Autoencoder is

an advanced DL model built from RNN, GRU, or LSTM to
learn efficient codings of unlabeled data. In molecular sciences,
Autoencoders are designed to generate effective low-dimen-
sional molecular representations. As shown in Figure 16d, a
generative network complex796 is an autoencoder-based
technique designed to automatically generate new drug
candidates with desirable properties. It consists of an encoder,
a latent space, a latent-space molecular generator, a decoder,
and a 2D fingerprint-binding predictor (2DFP-BP). Gao et
al.793 used this AI technology to generate some potential Mpro
inhibitors judged by the consensus of a latent-space prediction
and the 2DFP-BP.
Transformer is one of the frequently used models in the field

of natural language processing, which was introduced in 2017
for sequential data analysis.797 A transformer model is
equipped with an encoder−decoder structure. Typically, a
stack of multiple identical layers consists of a transformer
encoder. Each layer is constructed by a multihead self-attention
pooling and a position-wise feed-forward network. Similarly, a
transformer decoder is also a stack of multiple identical layers.
Such a layer is called the encoder−decoder attention.
Specifically, the encoder processes the input literately and
generates encodings that contain information from the input,
and the decoder then takes all the encodings as input and
generates decoded sequences as output.
Transformer has been widely applied to seek potential drug

candidates. For instance, Beck et al., designed a pretrained
model called transformer−drug target interaction (MT-DTI)
to find commercially available drugs that target SARS-CoV-2
viral proteins.768 Such a model used the BindingDB data-
base798 as a training set and Ki, Kd, and IC50 as evaluation
metrics to predict the interaction between viral proteins and
antiviral drugs. Besides, transformer is also integrated into a
model called AlphaFold/AlphaFold2799 to predict highly
accurate protein structures such as Mpro, OFR8 protein, and
ORF3a protein of SARS-CoV-2.800−802

2.4. Topics in Bioinformatics and Cheminformatics

Bioinformatics and cheminformatics are of paramount
importance in modeling and analysis of SARS-CoV-2.
Bioinformatic and cheminformatic approaches are integrated
with experiments, biochemistry, biophysics, ML, statistics, and
mathematics. In this section, we illustrate several topics from
the methodology-centered perspective. Sequence alignment,
homology modeling, and network-based bioinformatics are
discussed, followed by cheminformatics methods, namely
QSAR and pharmacophore models.

2.4.1. Sequence Alignment. Sequence alignment is a
method in which one can arrange DNA, RNA, or amino acid
sequences to identify their similar regions.803 Such similar
regions may arise from functional, structural, geometrical, or
evolutionary similarities. Though sequence alignment offers
the best accuracy, it is not practical to be used for a large
sample size. There are two main categories of sequence
alignment, namely pairwise sequence alignment and multiple
sequence alignment. The former only compares two sequences
at a time, while the latter compares many sequences. There are
many popular tools for sequence alignment such as BLAST
(basic local alignment search tool), for pairwise alignment, and
MAFFT, Clustal Omega, ClustalW, and MUSCLE, for
multiple sequence alignment. The following section describes
BLAST first, followed by several multiple sequence alignment
tools.

2.4.1.1. Pairwise Sequence Alignment. One of the popular
pairwise sequence alignment tools is BLAST. BLAST is a local
similarity search tool that is commonly used to find similar
DNA, RNA, and amino acid sequences to the sequence in
question. BLAST was created in 1990 based on the k-tuple
method and has since been implemented in the GenBank and
had numerous updates to increase efficiency and accuracy. The
k-tuple method804 is a fast heuristic method for pairwise
alignment and is commonly used as an initial step for a large
sample size. The similarity score Sij between sequences i and j
is defined as the number of k-tuple matches in the best
pairwise alignment minus a fixed gap penalty term. For DNA
and RNA, k usually ranges from 2 to 4, and for amino acids, k
is 1 or 2. Sij is calculated as the number of identities divided by
the number of residues compared between i and j. The
distance is defined as

d
S

1
100ij

ij= −
(55)

Note that this method does not guarantee optimal alignment,
but it is a fast heuristic method and can be used for the
initialization of BLAST and multiple sequence alignment.
BLAST begins by first creating a list of k-letter words. It then

searches for possible matching k-letter words in the databank
and scores them, and any words that score above a threshold
are kept. The high-scoring words are kept in a search tree. This
process is then extended to high-scoring pairs (HSPs), which
also looks for similar words, rather than only looking at exact
matching words. After searching for HSPs, the significance of
the HSPs score is considered by utilizing Gumbel extreme
value distribution (EVD). Further details can be found in the
literature.805,806 The GenBank tutorial can be found in ref 807.
As a basic tool for sequence alignment, it is utilized to detect,
identify, or search sequences in a database. For example,
similar coronavirus strands in other organisms, such
pangolins808,809 and bats,810 were found. This tool is also
used to detect SARS-CoV-2 virus in the environment811,812

such as in wastewaters.813,814

2.4.1.2. Multiple Sequence Alignment (MSA). Unlike
pairwise sequence alignment, MSA arranges three or more
DNA, RNA, or protein sequences by identical regions.
Through multiple sequence alignment, one can further analyze
sequence homology to find evolutionary origins. In many cases,
one uses a reference sequence, which is the first sequenced
data, to observe mutation in the SARS-CoV-2 genome.815

There are several popular tools, Clustal,816 MUSCLE,817

MAFFT,818,819 etc.
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Clustal. Clustal is a series of multiple sequence alignment
tools for sequence analysis. With the first version Clustal
released in 1988,816 its package has been developed for several
generations based on different methods. ClustalW is the third
generation and is updated to ClustalW2 currently, which aligns
sequences with the best similarity score first and progressively
aligns more distant scores.820,821 This is achieved by first
obtaining a rough pairwise sequence alignment using the k-
tuple method,804 followed by a neighbor-joining method,822

which uses midpoint rooting to create a guided tree. ClustalW2
is used as the basis for global alignment.
As for Clustal Omega, unlike ClustalW, it uses a guided tree

approach, rather than a progressive alignment method. Clustal
Omega begins with first producing a pairwise alignment using
the k-tuple method. This, however, does not guarantee finding
optimal alignment, but it is time-efficient. Then, the sequences
are clustered using the mBed method,823 which calculates
pairwise distance using the embedding method. Afterward, K-
means clustering is used to further cluster the sequence. Then,
a guided tree is formed utilizing the UPGMA method.824

Lastly, MSA is produced using the HHAlign package from
HH-Suite.824 Clustal Omega’s advantage comes from the large-
scale MSA. The accuracy and time complexity are average for a
low number of samples. For a large number of samples with a
long sequence, Clustal Omega produces high accuracy and is
time-efficient. ClustalW is the updated version of the original
Clustal MSA tool.
Multiple Alignment Using Fast Fourier Transform

(MAFFT). MAFFT is a MSA package based on fast Fourier
transform (FFT). Given two sequences v1 and v2, the
correlation cv(s) of volume between the two sequences with
positional lag of s sites can be defined as

c s v n v n s( ) ( ) ( )v
n N n s M1 ,1

1 2∑= ̂ ̂ +
≤ ≤ ≤ + ≤

where v̂1 and v̂2 are the FFT of the two sequences. If
homologous regions exist, through Fourier analysis, there will
be a peak in similar regions. For amino acid sequences,
MAFFT also calculates correlation between polarity:

c s n n s( ) ( ) ( )
n N n s M1 ,1

1 2∑ ρ ρ= ̂ ̂ +ρ
≤ ≤ ≤ + ≤

where ρ(s) is the polarity of each amino acid, N is the length of
v1, and M is the length of v2. Then, a scoring function can be
calculated through the sum of the two correlations

c s c s c s( ) ( ) ( )v= + ρ

To reduce the computational complexity, only peaks above
some threshold are considered. Note that the peak does not
tell the location of the homologous region directly and only
shows the lag. Therefore, neighboring regions at the peak must
be analyzed carefully. Further details of MAFFT can be found
in the literature.818,819

Multiple sequence comparison by Log-Expectation
(MUSCLE).MUSCLE is an MSA tool that utilizes progressive
alignment. There are three stages in MUSCLE: draft
progressive, improved progressive, and refinement.817 During
the draft progressive stage, a distance matrix is constructed by
computing the pairwise distance of each sequence through
using k-mer counting or by constructing global alignment of
pairs and determining the fractional identity. Then, a tree is
constructed using UPGMA (unweighted pair group method

with arithmetic mean)824 or neighbor-joining822 in which the
root of the tree is determined. Lastly, a progressive alignment is
built by tracing the branches of the tree, yielding the first MSA
of the sequence. In the improved progressive stage, a new
progressive alignment is constructed from iteratively refining
the previous tree. First, a new similarity matrix is constructed
from their mutual alignment in the current multiple align-
ments. Then, a new tree is constructed, similar to the draft
progressive stage. Each tree is compared to identify any
changes in the nodes or branching pathway. These steps are
repeated until conversion or a maximum iteration is reached.
In the progressive alignment stage, a new alignment is
computed for only the set of changed nodes. More details
can be found in refs 817 and 825.
Sequence alignment methods are widely used in SARS-CoV-

2 analysis. Many applications focus on identifying mutations
and comparing virus sequences from species and organisms.
Yin used sequence alignment to understand the evolution and
transmission of SARS-CoV-2.8 Wang et al. employed Clustal
Omega to decode asymptomatic COVID-19 infection and
transmission6 and to study mutational impacts on COVID-19
diagnosis, vaccines, and medicine.12 Sequence alignment is an
indispensable approach for SARS-CoV-2 modeling and
analysis.826−829

2.4.2. Homology Modeling. Homology modeling con-
structs an atomic-resolution model of the target protein from
its amino acid sequence based on experimental 3D structures
of related homologous proteins (i.e., templates).830 Homology
modeling relies on identifying one or more known protein
structures likely to resemble the structure of the query
sequence and producing an alignment that maps residues in
the query sequence to residues in the template sequence.831

Because the 3D experimental structures of SARS-CoV-2
proteins were largely unknown at the early stage of the
epidemic, homology modeling was widely applied to predict
3D structures of SARS-CoV-2 proteins, such as
Mpro,221,602,832−838 S protein or variants,271,839−861

RdRp,294−296,299,361,514,517,529,862−864 PLpro,865 E pro-
t e i n , 6 1 , 3 0 4 , 8 6 6 − 8 6 9 N p r o t e i n , 8 6 9 a n d
others.22,305,554,602,838,870−886 Some host proteins that interact
with SARS-CoV-2 were also predicted, such as ACE2,273,887,888

TMPRSS2,889−894 B cell epitopes,895 and CD147.896 Some 3D
structures of vaccine proteins897−899 were also built by
homology modeling. Due to the worldwide attention on this
virus, experimental structures of various SARS-CoV-2 proteins
and their variants can be found in the Protein Data Bank as
discussed in Table 1.

2.4.3. Network-Based Bioinformatics. Drug repurposing
methods require comparing the unique features, such as
chemical components or proteomic, metabolomic, or tran-
scriptomic data, of a drug candidate with existing drugs,
diseases, or clinical phenotypes. Compared to de novo drug
discovery being time-consuming and costly, drug repurposing
methods are considered as a more effective drug discovery
strategy, which could shorten the time and reduce the cost.
One idea of drug repurposing is that one drug currently
working for one disease may also work for other diseases if
these diseases share some similar protein targets.901,902 Thus,
integrated disease−human−drug interactions could form a
network with nodes such as drugs, diseases, and proteins, with
weighted edges referring to interactions between them, e.g., the
number of drugs with a certain target. Novel drug usage can be
discovered based on shared treatment profiles from disease
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connections, and the weight between two disease connections
determines the possibility of repurposing drugs.901 Common
pathways between different viruses or diseases are already
identified on a large scale.903 Meanwhile, another way to define
drug repurposing is based on the structural similarities of two
drugs: two drugs may work on the same therapeutic target if
the two drugs have similar structures. Causal network models
of SARS-CoV-2 expression and aging have been applied to
drug repurposing900 (see Figure 17). Synthetic analysis of drug
repurposing is carried out by network analysis, which provides
the relationships within biological data sets such as protein−
protein interaction networks and genomic and/or phenotypic
data sets. These biological networks integrate many different
data types from different resources such as experiments or in
silico methods. Computational drug repurposing can be
concluded as four parts: network constructions, computational
analyses, validations, and applications, where the network
constructions and computational analyses are illustrated as
follows.
2.4.3.1. Network Constructions. Biological networks have a

variety of types or formats such as protein−protein interaction
networks, knowledge graphs, or transcriptomic databases. Each
of them is a large repository of medical information
constructed via dry and wet laboratories.
Protein−Protein Interaction (PPI) Networks. To build

the protein−protein interactome, the detection methods are
summarized into three types: in vitro, in vivo, and in silico

methods. The in vitro methods are performed outside a living
organism. There are tremendous methods for PPI networks,
such as affinity purification−mass spectrometry (AP-MS)
methods, coimmunoprecipitation, affinity chromatography,
protein arrays, protein fragment complementation, NMR
spectroscopy, viral protein pull-down assay, and X-ray
crystallography. For example, the AP-MS experiment is one
of the most popular methods to build PPI networks starting to
select interesting proteins, called baits, for the coassociating
“prey” proteins to build PPI networks.904,905 Then, a 2D bait−
prey matrix is generated for analyzing and drug repurposing.
Published sample data sets are available such as the host and
HIV proteins906 and yeast protein−protein interaction net-
work.907 Gordon et al.75 implemented AP-MS to identify 332
high-confidence protein−protein interactions between SARS-
CoV-2 and human proteins based on SARS-CoV-2 proteins in
human cells. The in vivo methods are done in a living
organism, such as yeast two-hybrid (Y2H) and synthetic
lethality, where the Y2H method studies a bait against a
random library of potential prey proteins and synthetic
lethality studies functional interactions. In the work of drug
repurposing by Zhou et al.,908 methods such as Y2H and AP-
MS are implemented to build the virus−host and protein−
protein interactome. Popular methods are sequence- or
structure-based analysis, gene fusion, phylogenetic tree, gene
expression analysis, and in silico 2 hybrid.

Figure 17. Illustration of the drug repurposing. Reproduced with permission from ref 900. Copyright 2021 Belyaeva et al. under Creative
Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/. (a) Hypothesis of the relation between SARS-
CoV-2 and aging of individuals. Ciliated cells are in blue, stromal/fibroblast cells are in orange, and SARS-CoV-2 viral cells are in red. (b) RNA-
seq/GTEx, protein−protein interactions network, drug−target data, and CMap are integrated as a data set. (c and d) Pipeline of the drug
discovery/repurposing platform. First is mining relevant drugs by using an autoencoder with blue and orange points in the latent space representing
data from the drug screen and the SARS-CoV-2 infection studies. Second is identifying the disease interactome within the protein−protein
interaction network by implementing Steiner tree analysis. Last is investigating the drug mechanism from the first step (green diamond).900

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11318

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00965?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00965?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00965?fig=fig17&ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00965?fig=fig17&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Knowledge Graphs. A knowledge graph is a large repository
including the syntheses of small organic molecules, retro-
synthetic steps, pathophysiology, and other biological
information from the scientific literature collected via tradi-
tional computer-aided search methods or machine learning
methods. Several knowledge graphs regarding COVID-19 have
been built, including the CovidGraph (https://covidgraph.
org/) and the Blender Lab COVID-KG (http://blender.cs.
illinois.edu/covid19/).909 Many knowledge graphs were
created by extracting entities and their associations from
scientific publications. For example, Domingo-Fernańdez et
al.910 retrieved scientific literature related to COVID-19 and
manually encode information in the format of biological
expression language (BEL). Knowledge graphs can also be
constructed via other methods. For example, Monte Carlo tree
search was applied and combined with neural networks to
guide chemical synthesis.911 Later, this knowledge graph was
applied to search approved drugs for COVID-19, resulting in
Baricitinib as a potential treatment.80

Genome and Phenome. Genomics gives large volumes of
biological data such as disease samples, animal models, cell
lines, tissue samples, etc., while the phenome is the collection
of phenotypic information.912 Genomic and genetic profiles
have been studied for drug repurposing such as the
connectivity map (CMap),913 drug versus disease (DvD),914

the database for annotation, visualization, and integrated
discovery (DAVID),915 etc. Meanwhile, transcriptome (non-

coding RNAs) data sets are recently developed for drug
repurposing.916 Data sets of microRNAs are used as predictive
biomarkers and therapeutic targets in prostate cancer.917 At the
early stage of the COVID-19 pandemic, a high-resolution map
of the SARS-CoV-2 transcriptome and epitranscriptome was
constructed, which gave a better understanding of the life cycle
and pathogenicity of SARS-CoV-2.23 Based on transcriptome
data, differentially expressed genes (DEGs) were screened out
between SARS-CoV-2-infected cells and the control group and
analyzed the changes of the relevant molecular pathway, and it
turned out that 136 of 145 genes were upregulated and 9 of
145 genes were downregulated.918 Other transcriptome data
sets are applied to study the SARS-CoV-2 infection.737,919−923

2.4.3.2. Computational Analyses. Many computational
methods regarding networks have been applied. In this section
we briefly describe the most popular ones.
Mass Spectrometry Interaction Statistics (MiST).

MiST906 was invented to identify protein−protein interactions
that have biological significance from AP-MS data. Roughly
speaking, a MiST score is a weighted sum of three features
(abundance, reproducibility, and specificity). There are
multiple ways to determine the weights, and in ref 906 the
weights are determined by performing PCA. MiST was applied
to identify high-confidence PPI between SARS-CoV-2 proteins
and human proteins by Gordon et al.75 They identified 332
high-confidence PPIs and revealed how SARS-CoV-2 interacts
with human immune pathways and host translation machinery.

Figure 18. Illustration of the discovery of PPI inhibitors for SARS-CoV-2. Reproduced with permission from ref 924. Copyright 2021 Elsevier.
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They also performed a cheminformatics search for drugs that
modulate human proteins and disrupt the SARS-CoV-2
interactome. Similar applications of MiST can also be found
in the literature924 (see Figure 18).
Centrality. Different notions of centrality have already been

described in section 2.2.1. To analyze the network of the
differentially expressed genes (DEGs), degree centrality,
closeness centrality, and betweenness centrality are computed
for each node in ref 925. Fagone et al.925 studied the high
infectivity of SARS-CoV-2 and observed gender differences
from the clinical data. They identified a gene signature that
characterizes SARS-CoV-2 infection and compared it with the
gene signature induced by SARS-CoV infection. To predict
drugs, they carried out an antisignature perturbation analysis
based on the DEGs identified for SARS-CoV-2. Network
analysis via closeness centrality and betweenness centrality is
applied to data analysis.925 Maroli et al. implemented three
measures, closeness centrality, betweenness centrality, and
eigenvector centrality for the network analysis and examined
potential drugs.603 Sheik Amamuddy et al. targeted Mpro and
used the betweenness centrality to analyze Mpro,204 while
Ghorbani et al. targeted S protein.165 Similar notions of
centrality also appear in the literature.926,927

Proximity. Supposing C is a set of host genes associated
with a HCoV and T is a set of drug targets, one version of
network proximity of C with T can be calculated by
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where d(c, t) is the shortest distance between c and t in the
human protein interactome.908 Zhou et al.908 retrieved HCoV-
associated host protein from scientific publications and
calculated network proximity between drug targets and
HCoV-associated proteins to search for drug candidates.
They also sought possible drug combinations, guided by the
principle that each drug in a drug combination should target
separate neighborhoods in the human interactome network.
Notions of network proximity are also used in papers such as
ref 928.
Random Walk with Restart (RWR). Given a network,

simulating a particle walking from a node to a randomly
chosen nearby node can reveal the topology of the network. If
one repeatedly starts a random walk from the same node or a
set of nodes called seed(s), one can obtain nodes that are
proximal to the seed(s). In the study of PPI networks, RWR is
a method for identifying the most likely interactions. RWR is
used by Messina et al.929 to better understand the SARS-CoV-
2 pathogenesis. In their paper, since the SARS-CoV-2 genome
is similar to the SARS-CoV genome, they assumed that the
SARS-CoV-2 interactome and the SARS-CoV interactome
share several interactions. They extracted virus−host inter-
actomes of SARS-CoV, MERS-CoV, and HCoV-229E from
public databases and scientific publications, assembling a large
PPI network. S-glycoproteins of SARS-CoV, MERS-CoV, and
HCoV-229E were taken as seeds for RWR, discovering 200
closest proteins to S-glycoproteins. With a similar assumption,
an unbalanced birandom walk with Laplacian regularized least-
squares was implemented on a virus−drug association
network930 called VDA-RWLRLS. Compared to other state-
of-the-art prediction models, their methods showed better
VDA prediction performance.

Tremendous network-based applications were performed on
SARS-CoV-2. Many of them provide an essential PPI network
dataset between SARS-CoV-2 and humans,75 an architecture of
SARS-CoV-2 transcriptome,23 or effective candidates.75,80,908

Gordon et al.75 screened drugs targeting the human proteins in
the SARS-CoV-2 human interactome based on the PPI
network data set and considering the features of drugs such
as drug status, drug selectivity, drug availability, and the
statistical calculations of the protein interactions. They
identified 29 drugs already approved by the United States
Department of Agriculture (USDA), 12 investigational new
drugs, and 28 preclinical compounds. Zhou et al.908 studied the
antiviral drug repurposing methodology targeting SARS-CoV-
2. A systematic pharmacology-based network medicine plat-
form was implemented to identify the interplay between the
virus−host interactome and drug targets where they
investigated the network proximity of the SARS-CoV-2 host
and drug target interaction. Based on that, they reported three
potential drug combinations. In the study by Sadegh et al.,931

CoVex was developed for SARS-CoV-2 host interactome
exploration and drug (target) identification, which also
explored the virus−host interactome and potential drug target.
The network was constructed based on PPIs, drug−protein−
protein interactions, etc. for repurposing drug candidates.
Additionally, Srinivasan et al.932 developed a network of the
comprehensive structural gene and interactome of SARS-CoV-
2. Messina et al.929 investigated the host−pathogen interaction
model through the PPI network. Das et al. explored the host
protein for SARS-CoV-2 by observing central protein
associations in the PPI network.926 Analyses were done via
PPI networks between viral and host protein for host biological
responses.933,934 Kumar et al. studied the SARS-CoV-2
pathogenesis through the network.927 Bellucci et al. studied
the meta-interactome of SARS-CoV-2 via the network
analysis.935 Drug repurposing of SARS-CoV-2 is one of the
hottest topics in the applications of the network of SARS-CoV-
2. In addition to the aforementioned works, other similar
works were done for identifying drug repurposing of SARS-
CoV-2.310,928,936−940

2.4.4. Quantitative Structure−Activity Relationship
(QSAR) Models. QSAR models refer to regression or
classification models to predict the physicochemical, biological,
and environmental properties of compounds from the
knowledge of their chemical structures.941 In QSAR modeling,
the predictors consist of physicochemical properties and
theoretical molecular descriptors of chemicals. The QSAR
response variable can be the biological activity of the
chemicals. There are two steps to build a QSAR model.
First, the relationship between chemical structures and
biological activity is summarized from a data set of chemicals.
Second, QSAR models are implemented to predict the
activities of new chemicals.942 After features are extracted
from a data set, the learning method of QSAR can be the ML
methods mentioned in section 2.3, such as linear regression,
logistic regression, support vector machine, and random forest.
To identify potential Mpro inhibitors, Ghaleb et al.261 and

Acharya et al.943 applied 3D QSAR models where Ghaleb et
al.’s 3D model was based on comparative molecular similarity
indices analysis (CoMSIA) and Acharya et al.’s 3D model was
based on pharmacophores. More works used 2D QSAR
models, such as Alves et al.944 using the random forest
algorithm to build the model. Kumar et al.263 and Masand et
al.945,946 used genetic algorithms. SVM models were applied to
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a classification-based QSAR model for structural and
physicochemical interpretation analysis to identify potential
Mpro inhibitors.947 Ghosh et al.947 built a Monte Carlo-based
classification model involving classification QSAR-based data
mining. Under the framework of QSAR,942 to identify potential
SARS-CoV-2 main protease inhibitors, other works adopted
multiple linear regression with QSAR models,205,719,948−954

where Borquaye et al.955 used multiple linear regressions.
Moreover, QSAR models that predict inhibitors to other
SARS-CoV-2 proteins were also constructed. Targeting S
protein, Khaldan et al.956 built a 3D-QSAR model. Against
PLpro, QSAR models based on Monte Carlo classification and
multiple linear regression were constructed by Amin et
al.201,957 Blocking both Mpro and RdRp, Ahmed et al.573

built a QSAR model following partial-least-squares regression.
The QSAR model of Ahmed et al.573 was based on a partial-
least-squares regression.
2.4.5. Pharmacophore Models. A pharmacophore is an

abstract description of molecular features that are necessary for
the molecular recognition of a ligand by a biological
macromolecule. A pharmacophore model represents the
binding patterns of bioactive molecules with the target binding
site, by a distinct 3D arrangement of abstract interaction
features accounting for different types of noncovalent
interactions.958 Thus, a pharmacophore model explains the
process of structurally diverse ligands binding to a common
receptor site and the identification of ligands binding to the
same receptor.
In the work of searching COVID-19 therapeutics, most

pharmacophore models focused on Mpro.390,415,461,879,959−962

Pharmacophore models were used to screen inhibitor
compounds to SARS-CoV-2 from FDA-approved
drugs,461,959 DrugBank,879 or HIV inhibitors.960,961 A frag-
ment-based pharmacophore model was built from 22 non-
covalent fragments cocrystallized with Mpro.963 More
pharmacophore models were created for Mpro,964−967

PLpro,968 and nsp16.551

2.5. Miscellaneous

2.5.1. Molecular Modeling of Peptides, Proteins, or
Graphene Binding to SARS-CoV-2 Targets. According to
the large RBD of S protein, small-molecule drugs may not
efficiently block the entire RBD. The entire RBD of S protein
needs to be blocked by peptides.969 In a study of 1070 peptide-
based drugs docking to S protein, one high binding affinity was
Sar9Met (O2) 11-Substance P.970 Basit et al.971 also designed
a truncated version of the ACE2 receptor covering the binding
residues. They performed protein−protein docking and MD
simulations to analyze its binding affinity to RBD and complex
stability. One study predicted the affinities of the peptide
analogues Seq12, Seq12m, and Seq13m to S protein through
molecular docking, MD simulation, and MM-PB/GBSA
calculations.745 Other docking and MD studies of peptides
to S protein include refs 876 and 972−981. In addition,
potency of peptides to other targets was also anticipated. The
37 peptides from the antimicrobial peptide database were
docked to N protein, and the peptides with the highest docking
scores were further studied by MD simulations.982 Porto et
al.983 exhaustively performed docking of over 70000 peptides
to Mpro. Yathisha et al.’s MM/GBSA studies suggested three
angiotensin-I converting enzyme (ACE-I) inhibitory peptides
are potent to Mpro.984 Zhao et al.’s docking studies identified
GSRY among lactoferrin-derived peptides is potent to

Mpro.985 Behzadipour et al. evaluated the SARS-CoV-2
Mpro inhibitory activity of 326 di- and tripeptides from the
proteolysis of bovine milk proteins by docking.986 Some
works974,987,988 aimed to repurpose peptides from seed
proteins to targets Mpro, S protein, and PLpro. Some
molecular modeling studies of the protein−protein binding
were also contributed to treating SARS-CoV-2. Shaheer et
al.989 employed protein−protein docking and MD simulations
to design degraders of SARS-CoV-2. They first docked Mpro
to E3 ligase and predicted the possible complementarity
between them. Then, they generated the ternary complexes of
Mpro, E3 ligase, and possible linkers and ran MD simulations
on these complexes. Recently, Wang et al. studied graphene
interacting with SARS-CoV-2 Mpro via MD simulations. They
showed that Mpro can be absorbed onto the surfaces of
investigated materials and defective graphene and graphene
oxide interact with Mpro more intensely.990 Similar works were
also performed in the literature.991,992 Through MM/GBSA
calculations, Mehranfar et al. also suggested phosphorene can
be a good candidate for designing new nanomaterials for
selective detection of SARS-CoV-2.993

2.5.2. Molecular Modeling Studies on Vaccines.
Inspired by the composition of mRNA-based COVID-19
vaccines as a lipid mixture, Paloncyóva ́ et al.994 first studied the
behavior of the lipids and their mixtures in preassembled
bilayers and then modeled the self-assembly of IL-containing
(interleukin-containing) lipid nanoparticles (LNPs) for mRNA
delivery by MD simulations with and without the presence of
an RNA fragment. Additionally, they investigated the effect of
the IL’s charge (i.e., the pH) on the stability of the lipid phase.
In other MD simulation studies, the effect of glycan
microheterogeneity was evaluated, which could impact the
epitope exposure of the S protein.995 This study indicated that
glycans shield approximately 40% of the underlying protein
surface of the S protein from epitope exposure. Another two
studies898,996 generated tens of epitode vaccine candidates
originating from S protein by the online servers NetCTL,
IEDB, and FNepitope. The tertiary structures of these epitodes
were predicted and docked to the toll-like receptor 3, where
MD simulations were run for these complexes and the immune
reactions also were simulated. Sikora et al.162 performed
microsecond-scale MD simulations of a 4.1 million atom
system containing a patch of viral membrane with four full-
length, fully glycosylated and palmitoylated S proteins. By
mapping steric accessibility, structural rigidity, sequence
conservation, and generic antibody binding signatures, they
recovered known epitopes on S protein and predicted
promising epitope candidates for vaccine design. They also
discovered that the flexible glycan coat shielded a surface area
larger than expected from static structures. Through docking
and MD simulations, De Moura et al.997 identified epitopes
from the S protein that were able to elicit an immune response
mediated by the most frequent MHC-I alleles in the Brazilian
population. Both epitodes from S protein and epitodes from
other targets were investigated. Rahman et al.998 also
investigated some epitodes from the S protein, Mpro, and E
proteins. Ezaj et al.,999 Chauhan et al.,1000 Kalita et al.,1001

Waqas et al.,1002 Ranga et al.,1003 and Sarkar et al.1004 designed
and simulated epitodes from other proteins of SARS-CoV-2.
Other similar reports can be found in the litera-
ture.899,1005−1008

2.5.3. Molecular Modeling of Blocking Host Targets
with Controversy. Some researchers investigated potential
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damages of inhibition aimed at host receptor proteins. Parts of
molecular modeling studies aimed to block host proteins
r e l a t i ng to SARS -CoV-2 a t t a chment , s u ch a s
ACE2,315,324,876,1009−1029 TMPRSS2,479,892,1019,1030−1032

furin,1015,1031 and glucose regulated protein 78 (GRP78).1033

However, according to some reports, it is controversial to
design SARS-CoV-2 inhibitors targeting host ACE2s or related
proteins. For instance, ACE2 is an important enzyme attached
to cell membranes in the lungs, arteries, heart, kidney, and
intestines. It is critical for lowering blood pressure in a human
body.1034 It is unclear whether drugs that can inhibit ACE2 or
related targets are more beneficial than harmful. Further
investigation is needed.1035

2.5.4. Combination of Docking and MD Simulation.
Many works combine docking and MD simulation. For
example, molecule docking predicts binding poses, and MD
simulation further optimize and stabilize the confirmations of
complexes. Other researchers follow an ensemble docking
procedure to dock compounds to multiple conformations of
the protein extracted from MD simulations.
Ensemble Docking. An ensemble docking of the SARS-

CoV-2 Mpro was performed by Sztain et al.146 They docked
almost 72000 compounds to over 80 conformations of the
main protease generated from MD simulations and screened
these compounds through the ensemble docking strategy. To
obtain extensive conformational samplings of Mpro, a
Gaussian accelerated MD simulation1036 was run. Another
ensemble docking work of Mpro was implemented by
Koulgi.1037 They carried out long-time MD simulations on
the apo form of Mpro. Sixteen representative conformations
were collected from these MD simulations by clustering
analysis and Markov state modeling analysis.1038 Targeting
these 16 conformations, ensemble docking was performed on
some FDA-approved drugs and other drug leads, suggesting
some potent candidates such as Tobramycin. Additionally,
Novak et al.391 first screened 8756 approved or experimental
drugs by regular docking; then the best 10 drugs from regular
docking were further evaluated by an ensemble docking
strategy. The 10 drugs were docked to 5 conformation
representatives of Mpro obtained from MD simulations and
cluster analysis. Other ensemble docking studies were
implemented on the targets Mpro1039−1043 and RdRp.1044

Other investigations focused on docking and optimizing by
MD simulations.
Mpro. Conivaptan and azelastine were suggested as

potential repurposed drugs after applied docking to systemati-
cally predict the binding affinities of 1615 FDA-approved drugs
to Mpro.1045 Then, MD simulations were performed on these
two drugs for revealing their interactions with Mpro. In the
docking studies of 18 derivatives of hydroxychloroquine
(HCQ), remdesivir, and tetrahydrocannabinol, two derivatives
give excellent docking scores and higher stability than the
parent molecules. Their strong inhibition toward Mpro was
validated by MD simulations.1046 With the same strategy,
Cardoso et al.1047 in silico repurposed 10 different HIV
protease inhibitors to Mpro, and the binding free energy
surfaces of the best 3 drugs to Mpro were depicted by long-
time MD simulations. Other existing drugs, such as lopinavir,
oseltamivir, ritonavir, atazanavir, darunavir, plitidepsin, testos-
terone, progesterone, hydroxychloroquine, tetracyclines, fla-
violin, hydroxyethylamine analogs, buriti oil (mauritia flexuosa
L.) like inhibitors, etc., were also investigated specifically by
docking and MD simulations.397,614,1048−1073

Another important inhibitor source is natural products.
Jairajpuri et al.1074 performed the most extensive virtual
screening of natural products. They screened about 90000
compounds by ADMET, drug-like, and docking score
predictions. The best one, ZINC02123811, was further studied
by MD simulations. Following the workflow of ligand docking,
MD optimization, and rescoring, the library including 14064
marine natural products was screened.961 The best one,
heptafuhalol A, was predicted to have a docking score as high
as −18.0 kcal/mol. Ul Qamar et al.1075 used docking and MD
simulation to screen a medicinal plant library containing
32,297 potential antiviral phytochemicals/traditional Chinese
medicinal compounds. Potent inhibitors such as 5,7,3′,4′-
tetrahydroxy-2′-(3,3-dimethylallyl)isoflavone with a docking
score of −16.35 kcal/mol were predicted. Virtual screening was
also performed toward other natural products such as marine
products, Indian medicinal herbs, and plant prod-
ucts.238,612,613,620,621,719,1048,1075−1090

Other small molecules were also screened to inhibit the
SARS-CoV-2 Mpro. Ton et al.766 identified potential Mpro
inhibitors by docking 1.3 billion compounds and suggested
that compound ZINC000541677852 had the highest binding
affinity of −11.32 kcal/mol. Its interactions with Mpro were
studied by MD simulations. The docking and MD simulations
tested 4384 molecules from the Zinc data set,1091 and some of
them are FDA-approved drugs. Among them, the best one was
bisoctrizole.833 Additionally, some diaminobenzophenone
derivatives, prototypical-ketoamide inhibitors, HIV protease
inhibitors, leucoefdin, nutraceuticals, and others were also
studied.619,625,636,1047,1092−1107 Notably, Mohammad et al.1108

optimized some complexes of Mpro with ligands in the protein
data bank (PDB) and rescored them by AutoDock Vina, with
the best PDB structure being 6M2N.
S Protein. By docking and MD simulations to identify

potential inhibitors against SARS-CoV-2 S protein from 1582
FDA-approved drugs, lumacaftor was predicted to have the
highest binding affinity.1109 Moreover, to evaluate the binding
interactions between S protein and compounds, steered MD
simulations1110 were performed on the top compounds.
Bharath et al.1111 and Choudhary et al.851 screened 4015 and
1280 small compounds, respectively, and predicted that phytic
acid and GR 127935 hydrochloride hydrate had the highest
energies. Shoemark et al.1112 applied docking and MD
simulations to bind some vitamins, retinoids, and steroids as
to the free fatty acid pocket of S protein. Gupta et al. studied
the interactions between some functional spike-derived
peptides and S protein by docking and MD simulations.1113

Heparin has been found to have antiviral activity against SARS-
CoV-2. Paiardi et al. investigated the binding of heparin to the
SARS-CoV-2 spike glycoprotein by docking and MD
simulations. Their results suggest that heparin can inhibit
SARS-CoV-2 infection by three mechanisms: by allosterically
hindering binding to the host cell receptor, by directly
competing with binding to host heparan sulfate proteoglycan
coreceptors, and by preventing S cleavage by furin.1114 Other
works evaluating potential inhibitors against S protein include
refs 630, 634, 975, and 1115−1123.
RdRp. RdRp is another important target of SARS-CoV-2.

Nagar et al.1124 performed ADMET and docking-based
screening on 267324 compounds, and the best two of them
were subjected to MD-based further study. Another extensive
screening based on ADMET, docking, and MD simulations
was implemented by Ghazwani et al., which covers 13840
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compounds.1125 Singh et al.,1126 Mondal et al.,301 Begum et
al.,1127 and Pokhrel et al.1128 evaluated the potency of
thousands of existing drugs via docking and MD simulations.
Tens of fungal secondary metabolites were docked to RdRp by
Ebrahimi et al., and MD simulations were performed on the
top five compounds.1129 Elghoneimy’s docking and MD
simulations1130 aimed to repurpose some HCV NS5B palm
subdomain binders to inhibit SARS-CoV-2 RdRp.
PLpro. Targeting PLpro, in a study aiming to repurpose all

current FDA-approved drugs, the best drug, ergotamine,
among their predictions was reevaluated by MD simula-
tions.1131 Baildya et al.1132 predicted the potency of 19
compounds from Neem, and MD simulation was performed
on the best one, desacetylgedunin. Other similar studies can be
found in refs 537 and 1133.
Other Targets. Dihydroergotamine and irinotecan were

predicted to be the best drugs of the study of 3000 FDA-
approved and experimental drugs against 2′-O-methyltransfer-
ase in nsp16 of SARS-CoV-2.1134 De Lima Menezes et al.1135

screened 8694 approved and experimental drugs from
DrugBank against nsp1 and predicted that tirilazad was the
most potent one. Tazikeh-Lemeski et al.1136 docked 1516
FDA-approved drugs from DrugBank to nsp16 and inves-
tigated the drug−protein interactions by MD simulation,
finding that raltegravir had the best predicted binding affinity.
Following a similar scheme, a collection of 22122 Chinese
traditional medicines from TCM Database@Taiwan against
nsp14 was screened,884 with the best one being TCM57025.
Liang et al.1137 predicted the affinities of 300 potential
molecule inhibitors to the nsp10−nsp16 methyltransferase
complex via docking and MD simulations. Sixto-Loṕez et
al.1138 and Kumar et al.1139 predicted the potency of more than
2000 ligands to nsp15. Tatar et al.1140 aimed to repurpose 34
antiviral compounds to inhibit N protein.1140 Following the
workflow of ADMET screening, docking, optimizing of the top
predictions by MD simulations, and redocking, Rampogu et
al.1141 screened potential nsp16 inhibitors from 59619 natural
compounds.
Multiple Targets. In many reports, the same drugs were

tested against multiple targets. In the work of El-Demerdash et
al.,1142 the potentials of 15 marine polycyclic guanidine
alkaloids to block Mpro, S protein, N protein, M protein,
and nsp15 were evaluated by docking and MD simulations.
Many works cover three or two targets. Dwarka et al.1143

docked 14 South African medicinal plants to Mpro, RdRp, and
S protein RBD. They also investigated the dynamics and
interactions inside the complexes using MD simulations.
However, no potent inhibitors were found. Bhowmik et
al.1144 virtually screened more than 200 antiviral natural
compounds and 348 antiviral drugs targeting the E, M, and N
proteins responsible for envelope formation and virion
assembly. Molavi et al.1145 repurposed 1760 FDA-approved
drugs to Mpro and RdRp, and Rajpoot et al.1146 repurposed
291 drugs to Mpro and PLpro. More similar works include refs
599, 609, 622, 624, 628, 632, 637, 838, 875, 889, and
1147−1173.
2.5.5. Accuracy Tests of Molecular Modeling Meth-

ods on SARS-CoV-2 Targets. To assess the predictive power
of molecular modeling methods on SARS-CoV-2 targets,
accuracy tests were performed on some SARS-CoV-2
inhibitors with known experimental binding affinities. Ngo et
al.1174 systematically evaluated four popular binding-affinity
calculation approaches, namely, FEP, steered MD, LIE, and

MM/PBSA. They tested 20 Mpro inhibitors with available
affinity values and found FEP was the most accurate with a
correlation of 0.85, while the correlations of steered MD, LIE,
and MM/PBSA are 0.74, 0.73, and 0.32, respectively. A test of
the affinity prediction of 19 Mpro inhibitors revealed docking
can achieve a correlation of 0.50 and steered MD can raise the
correlation to 0.65.1175 Another test of the docking poses
predictions from several leading docking programs, namely,
Glide, DOCK, AutoDock, AutoDock Vina, FRED, and
EnzyDock.1176 In the scope of 193 experimental Mpro−
inhibitor complexes, the best performance is that 26% of
noncovalently bound ligands (from glide) and 45% of
covalently bound ligands (from EnzyDock) can reach
RMSAs < 2 Å. According to their tests, the work suggested
good poses may be provided but the affinity predicted for each
pose may not be reliable.1177 Fan et al.1178 added some
structural restraints deduced from experiments that could
improve the accuracy of docking predictions.

2.5.6. Combined MD Simulation and Deep Learning.
Gupta1179 first selected 92 potential Mpro inhibitors from
FDA-approved drugs by docking and then further evaluated
their potency by MD simulations and MM/PBSA calculations
using the hybrid of the Accurate NeurAl networK engINe for
molecular energies (ANAKIN-ME) deep learning force
field1180 and a conventional molecular mechanics force field.
Their results suggested that targeting was the most potent drug
against the main protease. A similar work integrated a deep
neural network model with docking and MD simulations.1181

Moreover, AI-driven multiscale simulations provided analyses
of the spike’s full glycan shield elucidation, the role of spike
glycans in the viral infection, the interactions between the S
and the human ACE2, etc.1182

2.5.7. Combined MD Simulation and Experiment. The
MD simulations revealed three flexible hinges within the stalk,
coined hip, knee, and ankle of the S protein, which were
consistent with tomographic experiments.1183 In the imple-
mentation of virtual screening of 6218 drugs targeting Mpro
and RdRp,1147 the best ones and some of their combinations
were verified by cell-based assays. Combining experiments and
calculation, Zaidman et al.1184 developed a fragment-based and
automatic pipeline to design potent Mpro inhibitors. Dwivedi
et al.’s docking and MD simulation confirmed their
experimental results that holothurian sulfated glycans show
potential effects against SARS-CoV-2 S protein RBD.1185

Similar works include refs 1093, 1153, 1154, and 1186−1213.
Other studies applied experiments to identify potent
compounds and used docking to reveal interactions.1214−1218

2.5.8. Combined MD Simulation and Data Analysis.
Some of the popular methods to analyze dynamics character-
istics in MD simulation are principal component analysis
(PCA) and normal-mode analysis, which can extract the
principal modes of motion from MD simulations.1219,1220

Toward SARS-CoV-2, some works applied PCA to reveal the
internal motions of Mpro.407,421,481,719,1061,1074 Rane et al.506

and Dehury et al.1221 used such analysis to investigate the
dynamics of the S protein. Bera et al.,569 Henderson et al.,167

and Chandra et al.545 used PCA to elucidate the motions of the
PLpro and NendoU, respectively. Bhattacharya et al.1005

applied NMA to display the mobility of the human TLR4/5
protein and SARS-CoV-2 vaccine component complex. Shaikh
et al.1222 used elastic network models to identify the residue
cross-correlation matrix.
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2.5.9. Combinations of Multiple Molecular Modeling
Methods. In a comprehensive study in predicting potent
Mpro inhibitors, it first screened their compounds by
molecular docking, and then the top four compounds from
the docking prediction were more accurately calculated by
MM/PBSA simulation.1223 In the third step, the binding of the
top two compounds to Mpro was further studied by QM/MM
simulations and the chemical properties of these two
compounds, such as highest the occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO),
were predicted by DFT calculations. These studies also involve
multiple molecular modeling methods.1224−1226

2.5.10. Molecular Modeling of Mutational Impacts.
Through docking and MD simulations, the drug candidate PF-
0083523, under clinical trial now, was predicted, which was
potent to four reported Mpro mutants.1227 Muhammad et
al.’s1228 virtual screening suggested that some potent
phytochemical inhibitors were effective to two Asian mutants
of Mpro. Sheik Amamuddy et al.204 studied the impact of
Mpro mutations on its 3D conformation as well. More studies
focused on the mutations of S protein. Some works applied
docking, MD simulations, MM/PBSA, or MM/GBSA
calculations to investigate S protein mutation impacts on the
interactions and affinities between S protein RBD and ACE2
protein.1229−1234 Additionally, via MD simulations, it was
found that mutations on the distal polybasic cleavage sites of S
protein could weaken the binding between S protein and
human ACE2, which means these distal polybasic cleavage
sites were critical to the binding.1235 Virtual alanine scanning
mutagenesis by FEP MD simulations was also performed to
uncover key S protein residues in its ACE2 binding.1236

Dehury et al.1221 compared the interactions of mutated S
proteins to the wild type of S protein binding to ACE2.
Calcagnile et al.274 and Hadi-Alijanvand et al.1237 assessed
impacts of ACE2 polymorphisms to their affinities to S protein
by docking and MM/GBSA calculations. Furthermore, the
impact of S protein mutations on inhibitor and antibody
efficacy was also simulated. For example, the docking and MD
simulations indicated the Alpha variant did not compromise
the efficacy of catechins.1238 However, mutations H49Y,
D614G, and T573I were suggested to considerably affect the
binding of cepharanthine, nelfinavir, and hydroxychloroquine
into their respective binding sites.1239 Wu et al.’s MM/GBSA

calculation suggested that most antibodies (about 85%) have
weaker binding affinities to the E484 K mutated S protein than
to the WT, indicating the high risk of immune evasion of the
mutated virus from most current antibodies.1240 Lastly,
Hossain et al.1241 performed docking to investigate the impacts
of the mutations on nsp1, nsp3, and PLpro. Wu et al.1242

systematically predicted mutation impacts to the conforma-
tions of multiple SARS-CoV-2 proteins and the interactions
between them.

2.5.11. Protein Pocket Detection. The detection and
characterization of protein pockets and cavities are critical
issues in molecular biology studies. Pocket detection
algorithms can be classified as grid-based and grid-free
approaches.1243,1244 Grid-based approaches embed proteins
in 3D grids and then search for grid points that satisfy some
conditions. Grid-free ones include methods based on the probe
(sphere) or the concepts of Voronoi diagrams.
The plug-in Pockets 2.0 combined the pocket-detecting

algorithms Fpocket1243 and PLANTS1245 to characterize the
SARS-CoV-2 druggable binding pockets.1246 Zimmerman et
al.1247 launched large-scale Folding@home simulations from
their FAST-pockets adaptive sampling to aid in the discovery
of cryptic pockets on various SARS-CoV-2 proteins. Another
server, CavityPlus (www.pkumdl.cn/cavityplus), was imple-
mented to search druggable cavities.290 Vithani et al.1248

adopted FAST sampling algorithms to quickly explore cryptic
pockets on nsp16 and the nsp10/nsp16 complex. Manfredonia
et al.1249 predicted the 3D structure of SARS-CoV-2 RNA by
coarse-grained modeling and detected potential pockets. Sheik
Amamuddy et al.204 predicted potential binding pockets of
Mpro.

2.5.12. AlphaFold. Chains of amino acids spontaneously
fold to form biologically active proteins with their native 3D
structures. However, it is challenging to understand how amino
acid sequences determine the 3D structures of the proteins,
and such a topic is called the “protein folding problem”.
Protein structures can be identified through multiple
techniques such as cryo-electron microscopy, X-ray crystallog-
raphy, and NMR. However, such techniques are expensive and
time-consuming, and only 0.085% (170 K out of 200M) of the
3D structures of proteins have been determined over the past
60 years.784 Therefore, seeking a more efficient and accurate
way to predict the 3D structure of proteins is crucial. Starting

Figure 19. AplhaFold2 architecture. Reproduced with permission from ref 799. Copyright 2021 Jumper et al. under Creative Commons Attribution
4.0 International License https://creativecommons.org/licenses/by/4.0/. Arrows show the information flow among the various components
described in this paper. Array shapes are (s, r, c), where s shows the number of sequences (Nseq in the main text), r represents the number of
residues (Nres in the main text), and c is the number of channels.
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from 1994, a worldwide experiment for protein structure
prediction called CASP has taken place every two years.
Researchers worldwide have put efforts into this experiment to
help achieve high correlations between the experimental
structures and the 3D structures predicted by theoretical-
based methods. However, such predicted structures had
accuracy without experimental precision, which limited their
utility for many biological applications.
Developed by Google’s DeepMind in 2018, an AI-based

program called AlphaFold that was designed to predict protein
structures achieved high accuracy competitive with experi-
ments in CASP13 assessment.799 As a result, AlphaFold was
ranked first among 98 teams. Specifically, AlphaFold made the
best prediction for 25 out of 43 targets. It was the first time
that AlphaFold drew the attention of scientists worldwide. In
2020, AlphaFold2, a new version of the AI-based model,
entered into the CASP14 assessment.799 The predicted protein
structures by AlphaFold2 were vastly more accurate than other
competing methods. Overall, 88 out of 97 protein structures
predicted by AlphaFold2 achieved the most precise structure
for targets, which was a significant improvement compared to
AlphaFold in 2018.
AlphaFold2 consists of two major modules: the evoformer

module and the structure module. First, by applying the
genetic database search and structure database search, the
primary amino acid sequences are encoded to embed MSAs
and pairwise features, which can be treated as the inputs of the
evoformer module. The evoformer module consists of
attention-based and nonattention-based transformers. Such a
module produces a processed MSA array with shape Nseq ×
Nres and a processed residue pair feature with an array size of
Nres × Nres, which are then fed into the structure module to get
the explicit predicted 3D structures. Here, Nseq and Nres
represent the number of sequences and the number of
residues, respectively. Moreover, an iterative refinement called
“recycling” is involved in AlphaFold2 to minimize the final loss
and achieve higher accuracy as shown in Figure 19.
AlphaFold2 has been used to predict highly accurate SARS-

CoV-2 protein structures since 2020. For instance, the
AlphaFold-predicted structure of ORF8 was used as a search
model, which provided a phase solution by molecular
replacement (MR) by Flower et al.801 Pandey et al. applied
AlphaFold to predict the secondary structure of nsp6, which
showed 91.7% and 8.3% of residues are located in the most
favored and additionally allowed regions, respectively.1250

Slavin et al. employed AlphaFold2 to generate a single
consistent all-atom model of SARS-CoV-2 nsp2, which
indicated three putative metal binding sites and further
suggested that nsp2 may have a role in zinc regulation.1251

Furthermore, a team led by Ad Bax introduced three models to
evaluate their concordance with residual dipolar couplings
(RDCs) measured in 2021. They are (1) a standard
AlphaFold2 model; (2) an implementation of AlphaFold2
that excluded all candidate template X-ray structures after Jan.
1, 2020; and (3) an implementation of the AlphaFold2 model
that excluded structures homologous to coronaviral Mpro.800

3. DISCUSSION
Since the outbreak of the COVID-19 epidemics in December
2019, enormous effort has been devoted to scientific research
relating to SARS-CoV-2, leading to significant breakthroughs,
such as the development of vaccines and experimental
determination of protein structures. Vaccines, drugs, and

antibody therapies are in emergency use authorization. Along
with the rapid development of high-performance computers,
biophysical methods, and AI algorithms in recent decades,
plenty of theoretical and computational studies were carried
out against SARS-CoV-2. Theoretical and computational
studies are significant for combating urgent epidemics and
pandemics since they are faster and cheaper.1252 This review
strives to summarize the existing SARS-CoV-2 related
theoretical and computational works and inspire future ones.
SARS-CoV-2 protein structure predictions also play an
important role, especially at the early stage of the epidemics
when experimental structures were largely unavailable. At this
point, besides traditional homology modeling, a more popular
solution is the high-level deep-learning-based models such as
AlphaFold39 and C−I-TASSER,785 both making use of deep
CNNs.

3.1. Drug Repurposing

Many research efforts covered by this review are about
repurposing current drugs or inhibitors to target SARS-CoV-2
because the drug development has been one of the most urgent
issues in combating COVID-19. A variety of drug repurposing
approaches has been applied, from molecular docking and MD
simulation to network analysis and machine/deep learning, as
summarized below. (1) The most straightforward approach is
molecular docking, which provides both binding poses and
corresponding scores. (2) In many studies, docking poses were
further optimized by MD simulations, and these optimized
poses were rescored by docking programs. (3) More accurate
binding free energies can be achieved by MD-simulation-based
or even QM-based calculations, such as MM/PB(GB)SA, free
energy perturbation, metadynamics, QM/MM, and DFT. (4)
Other than traditional molecular docking and MD simulations,
the development of AI, machine/deep learning technologies
opens a new approach to discover SARS-CoV-2 drugs, as well
as network analysis. With existing drugs as training sets,
machine/deep learning can predict the potency of a large
number of potential SARS-CoV-2 inhibitors in a short time.753

3D models also provided binding poses.703 Moreover, AI has
the potential to create new drugs to combat COVID-19.796,1253

For example, Bung et al.366 employed RNN-based networks,
and Gao et al.793 used GRU-based generative networks to
design new potential main protease inhibitors. (5) Network-
based approaches were also performed in SARS-CoV-2 drug
repurposing, promising solutions to identify drugs associated
with certain diseases. These networks can be based on
proteomic, transcriptomic, or metabolomic data. The basic
idea is that one drug currently curing one disease may also
work for other diseases if sharing some similar protein
targets.75,80,913 Thus, integrated disease−human−drug inter-
actions form a network connecting drugs, diseases, and targets.
Novel drug usage can be discovered based on shared treatment
profiles from disease connections. At the level of proteomic
networks, Gordon et al.75 and Zhou et al.908 systematically
explored the host dependencies of the SARS-CoV-2 virus to
identify host proteins that are already targeted by existing
drugs. Therapies that target the host−virus interface could
potentially present durable, broad-spectrum treatments. At the
level of transcriptomic networks, Belyaeva et al.900 used the
transcriptomic data from the CMap database to search for
compounds that may cause genomic changes opposite to the
changes caused by SARS-CoV-2, so as to identify novel and
potentially effective drugs with antiviral properties. Ahmed1254
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adopted a transcriptomic network to reveal the mechanism of
Vitamin D treating the cytokine storm caused by SARS-CoV-2.
(6) Traditional QSAR approaches were implemented in many
calculations for drug rediscovery.

3.2. Mutational Impacts on SARS-CoV-2 Infectivity

SARS-CoV-2 infectivity plays a paramount important role in

SARS-CoV-2 transmission and COVID-19 prevention and

Figure 20. (a) Illustration of SARS-CoV-2 mutations given by Mutation Tracker. The interactive version is available at the Web site: https://users.
math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html. (b) Illustration of the analysis of SARS-CoV-2 mutations given by interactive
Mutation Analyzer (https://weilab.math.msu.edu/MutationAnalyzer/). (c) Reproduction of Figure 3 of ref 78. The time evolution of 89 SARS-
CoV-2 S protein RBD mutations. The green lines represent the mutations that strengthen the infectivity of SARS-CoV-2, and the red lines
represent the mutations that weaken the infectivity of SARS-CoV-2. Many mutations overlap their trajectories. Here, the collection date of each
genome sequence deposited in GISAID was applied according to the information recorded in June 2020.78 (d) Reproduction of Figure 2 of ref 79.
Illustration of SARS-CoV-2 mutation-induced BFE changes for the complexes of S protein and ACE2. Here, the 100 most observed mutations out
of 651 mutations on S protein RBD and their frequencies are illustrated as recorded in April 2021.79 The highest frequency was 168,801, while the
lowest frequency was 28. Therefore, the frequencies of the rest of the 551 mutations were lower than 28. (e) Reproduction of the right chart of
Figure 11 of ref 764. Illustration of SARS-CoV-2 RBD mutation-induced binding free energy changes for the complexes of S protein and antibody
LY-CoV555. Here, mutations L452R, V483F/A, E484K/Q, F486L, F490L/S, Q493K/R, and S494P could potentially disrupt the binding of
antibodies and S protein RBD.
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control. The experimental methods to evaluate viral infectivity
are expensive and time-consuming considering the rapid
spread of COVID-19. For all SARS-CoV-2 variants around
the world, it is even more challenging to experimentally
measure infectivity. However, a computational platform based
on theoretical analysis, which quantitatively predicts the BFE
changes of the RBD-ACE2 complex induced by mutations on
the S protein RBD, will deliver a consistent measurement of
SARS-CoV-2 infectivity. A computational platform of RBD-
ACE2 BFE changes induced by RBD mutations is given in ref
78. It integrates a series of well-established methods, including
the genotyping of SARS-CoV-2 genetic sequences,12 protein
sequence alignment,78 the biophysics of PPIs, the algebraic
topology representation of proteins,219,663 the deep learning
modeling of RBD-ACE2 BFE changes induced by muta-
tions,695 and the training with existing experimental mutational
data sets. According to the genotyping, the authors
theoretically revealed that the SARS-CoV-2 diagnostic target
mutations had false-negative test results.9 Experimentally, this
finding is confirmed.1255 Similarly, the impacts of mutations on
vaccines and antibody therapies can be decoded.12 In addition,
by applying the large data set of SARS-CoV-2 spreading
around the world, the top eight mutations in the United States
are from two groups in which one group of five concurrent
mutations is prevailing and another group has three concurrent
mutations that faded out gradually.10 Additionally, many of the
MD-based studies are devoted to the mutation-induced
conformational changes of S protein and its corresponding
binding affinity changes to the human ACE2.485−490

3.3. Mechanisms of SARS-CoV-2 Evolution

The understanding of the mechanism of SARS-CoV-2
evolution is a prerequisite for the prediction of emerging
variants and essential for combating COVID-19. SARS-CoV-2
evolution is driven by competing mutations at molecular and
organism scales. Molecular-scale mutations are mainly caused
by a series of random errors in replications, transcriptions, and
translations.1256 Unlike other RNA viruses such as the flu virus
and HIV, SARS-CoV-2 has a genetic proofreading mecha-
nism1257 and has more fidelity. Additionally, at the organism
scale, host gene editing is found to be the dominating source
for mutations.11 Moreover, viral genetic recombination may
happen at the organism scale as well. In Figure 20a, it is shown
that SARS-CoV-2 had over 28,912 unique mutations by
November 2021, where each SARS-CoV-2 nucleotide had one
known mutation on average. Nonetheless, most mutations
have little to do with virus evolution, which is regulated by a
population-scale mechanism. In summer 2020, Chen et al.
hypothesized that “natural selection favors those mutations
that enhance the viral transmission”.78 The authors further
hypothesized that mutations that strengthen the binding of the
RBD-ACE2 complex will enhance the SARS-CoV-2 infectivity
and transmission.78 To investigate this natural selection
mechanism of evolution from a theoretical perspective, the
authors applied the single-nucleotide polymorphism calling of
over 15,000 SARS-CoV-2 genomes from GISAID and
identified 725 nondegenerated mutations on the SARS-CoV-
2 S protein at the early stage of the pandemic (i.e., May 27,
2020). Among them, 89 RBD mutations are important to the
binding of SARS-CoV-2 S protein and ACE2. Despite the
highest frequency of 89 mutations being only about 50, the
theoretical model resulted in Figure 20c, showing the first
evidence of natural selection. There was a dramatic increase in

the frequencies of a few infectivity-strengthening RBD
mutations as the pandemic unfolded in the following
months.79 Figure 20d shows that all the 100 most observed
RBD mutations have their predicted BFE changes above the
average values of −0.28 kcal/mol.79 The chance for this to
occur accidentally is one in 2100, which undoubtedly confirms
the natural selection mechanism of SARS-CoV-2 evolution.
Currently, the prevailing SARS-CoV-2 variants are known as

Alpha, Beta, Gamma, Delta, Epsilon, Theta, Kappa, Lambda,
and Mu, involving RBD (co)mutations [N501Y], [K417N,
E484K, N501Y], [K417T, E484K, N501Y], [L452R, T478K],
[L452R], [E484K, N501Y], [L452R, E484Q], [L452Q,
F490S], and [R346K, E484K, N501Y], respectively. More
recently, the Omicron variant, starting in late November 2021,
includes 15 RBD mutations [G339D, S371L, S373P, S375F,
K417N, N440K, G446S, S477N, T478K, E484A, Q493R,
G496S, Q498R, N501Y, Y505H]. Remarkably, two common
RBD residues, 452 and 501, for these variants were predicted
to “have high chances to mutate into significantly more
infectious COVID-19 strains” in May 2020,78 many months
before any variants were identified.
Meanwhile, efforts from researchers worldwide provide more

genome sequence information of SARS-CoV-2 and exper-
imental data on ACE2/antibodies binding to S protein. Some
deep mutational data on RBD and ACE2 were available in late
2020,1258,1259 which can be used to improve the mathematical
model in terms of accuracy.687 A computational workflow was
presented to predict impacts induced by mutations on the
binding between RBD and ACE2.1260 Computational muta-
genesis work suggested mutations L455D/W, F456 K/W,
Q493K, N501T, and Y505W on RBD enhance the ACE2/
RBD binding.1261 By docking, Omicron and Delta variants
were studied, whose mutations Q493R, N501Y, S371L, S373P,
S375F, Q498R, and T478K contribute significantly to the high
binding affinity with human ACE2.1262

3.4. Mutational Impacts on SARS-CoV-2 Antibodies and
Vaccines

As the vaccination rate increasing and SARS-CoV-2 variants
erupting, a more intriguing question is whether vaccination and
antibody therapies protect us from the SARS-CoV-2 variants.
More precisely, it is imperative to understand how these
variants affect vaccines and antibody therapies. Therefore, a
statistical analysis of a variety of antibodies can guide the
efficacy analysis of vaccination in a population. As the
collection of antibody−RBD complexes accumulates, a library
of 130 antibody−RBD complex structures765 was used as a
statistical ensemble to analyze the RBD mutation impacts on
antibodies and vaccines. Additionally, the theoretical model
can be applied to study these emerging variant impacts on
mAbs, especially the mAbs obtained EUA from the FDA such
as Regeneron and Eli Lilly antibodies.764 Figure 20e illustrates
the BFE changes induced by the 100 most observed RBD
mutations of the complex binding of RBD and antibody LY-
CoV555. One noted that mutations L452R, V483F/A, E484K/
Q, F486L, F490L/S, Q493K/R, and S494P could weaken the
binding ability of Eli Lilly mAbs. Coincidentally, LY-CoV555
was taken off from the EUA (Emergency Use Authorization)
in March 2021 due to its low efficacy on the Beta [K417N,
E484K, N501Y] and Gamma [K417T, E484K, N501Y]
variants. Soon afterward, it was allowed to return to the
market in September 2021 for its efficacy on the Delta variant
[L452R, T478K]. The prediction in Figure 20e is a good
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explanation behind these events. More results for other mAbs
as well as a series of confirmations by experimental data were
given in the literature.764 A complete analysis of all RBD
mutations is provided at the Web site Mutation Analyzer
(https://weilab.math.msu.edu/MutationAnalyzer/) as shown
in Figure 20b.
Some computational investigations were devoted to vaccine

design. MD simulations were employed to simulate vaccine-
related immune reactions, such as the binding of the MCH
(major histocompatibility complex) II−epitope complexes.1008

Liu et al.’s359 FEP calculations suggested the E484Q and
L452R mutations significantly reduce the binding affinity
between the RBD of the Kappa variant and the antibody LY-
CoV555 as well. Accurate computational predictions of
Omicron’s vaccine breakthrough and antibody resistance
were made available before any experiments and were all
confirmed by experimental data.1263

4. CONCLUDING REMARKS

Since the first COVID-19 case was reported in December
2019, this pandemic has led to five waves of infections, over
400 million reported cases globally, and near 6 million deaths.
Despite the exciting progress in the developments of vaccines
and monoclonal antibodies, their potential side effects, such as
allergic reactions to COVID-19 vaccines, are not very clear.
Additionally, the latest Omicron variant is able to evade
current vaccines and compromise essentially all monoclonal
antibodies. Although the Omicron variant may be less deadly
than the original virus, there is no guarantee that future
variants will be less virulent. Our present understanding of
SARS-CoV-2 and COVID-19 is still quite poor.
Molecular modeling, simulation, and prediction of SARS-

CoV-2 have had tremendous contributions to the development
of effective vaccines, drugs, and antibody therapies. Their role
in combating COVID-19 is indispensable. For example, thanks
to an approach that integrates genotyping, biophysics, artificial
intelligence, advanced mathematics, and experiment data, it is
now well-understood that the SARS-CoV-2 evolution and
transmission are governed by natural selection.78 This means
the next SARS-CoV-2 variant will be increasingly more
transmissible through high infectivity, robust vaccine break-
through, and strong antibody resistance.765,1264 This under-
standing cannot be achieved through individual experiments.
Therefore, it is imperative to provide a literature review for the
study of the molecular modeling, simulation, and prediction of
SARS-CoV-2. Since the related literature is huge and varies in
quality, we cannot collect all of the existing literature for the
topic. However, we try to put forward a methodology-centered
review in which we emphasize the methods used in various
studies. To this end, we gather the existing theoretical and
computational studies of SARS-CoV-2 concerning aspects such
as molecular modeling, biophysics, bioinformatics, cheminfor-
matics, machine learning including deep learning, and
mathematical approaches, aiming to provide a comprehensive,
systematic, and indispensable component for the under-
standing of the molecular mechanism of SARS-CoV-2 and its
interactions with host cells. This review provides a method-
ology-centered description of the status of the molecular
model, simulation, and prediction of SARS-CoV-2. We discuss
the traditional molecular theories, models, and methods and
emergent machine learning algorithms and mathematical
approaches.

Although various vaccines have been approved and in use,
vaccine-breakthrough mutations have become a serious
problem. Even with the promising news of new vaccines,
COVID-19 as a global health crisis may still last for years
before it is fully stopped globally.
The research on SARS-CoV-2 will also last for many years. It

will take researchers many more years to fully understand the
molecular mechanism of coronaviruses, such as RNA proof-
reading, virus−host cell interactions, antibody−antigen inter-
actions, protein−protein interactions, protein−drug interac-
tions, viral regulation of host cell functions, and immune
response. Even if we could control the transmission of SARS-
CoV-2 in the future, newly emergent coronaviruses may still
cause similar pandemic outbreaks. Therefore, the coronaviral
studies will continue even after the current pandemic is fully
under control.
Currently, epidemiologists, virologists, biologists, medical

scientists, pharmacists, pharmacologists, chemists, biophysi-
cists, mathematicians, computer scientists, and many others are
called to investigate various aspects of COVID-19 and SARS-
CoV-2. This trend of a joint effort on COVID-19
investigations will continue beyond the present pandemic.
The urgent need for the molecular mechanistic under-

standing of SARS-CoV-2 and COVID-19 will further stimulate
the development of computational biophysical, artificial
intelligence, and advanced mathematical methods. The
theoretical, computational, and mathematical communities
will benefit from this endeavor against the pandemic.
The year 2020 has witnessed the birth of human mRNA

vaccines for the first timea remarkable accomplishment in
science and technology. Although there are more dark days
ahead of us, humanity will prevail in a post-COVID-19 world.
Science will emerge stronger against all pathogens and diseases
in the future.
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GLOSSARY

Mathematical Symbols in Section 2.1

A electrostatic size of a molecule
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B Debye−Waller factor (a.k.a. B factor)
d distance
dS infinitesimal surface element vector of a

molecule
Ek kinetic energy
F force field of potential energy
G* total free energy of complex, protein, and

ligand
ℏ reduced Planck constant
H Hessian matrix
k spring constant in Hooke’s law
kB Boltzmann constant
kr force constant for bond length
kθ force constant for bond angle

Lagrangian
m mass
M configuration space
n outward unit normal vector
p coordinates at a point
p̂ generalized coordinates at point p
pi ith component of p
P constant pressure
P probability
qi partial charge of an atom i
rij distance between atoms i and j
ri position of atom i of a specific molecule
r position of the infinitesimal surface of a

molecule
Ri effective Born radius of ith atom
S entropy
T absolute temperature/thermodynamic temper-

ature
Tm transition temperature
U potential energy (in molecular mechanics)
v velocity vector at a point p
V potential energy (in quantum mechanics)
Veff Kohn−Shan potential
Veff external potential
Vxc[ρ(r)] exchange-correlation potential
Vxc[ρ(r)] exchange-correlation energy
VQM/MM
sub energy of the entire system under the

subtractive scheme
VQM/MM
add energy of the entire system under the additive

scheme
⟨VMM⟩ average molecular mechanical potential energy
ΔG(T) free energy changes (ΔG) of unfolding at

thermodynamic temperature (T)
ΔHm enthalpy of unfolding at the transition temper-

ature Tm
ΔCp heat capacity change
ΔGGB

polar GB approximation of electrostatic solvation
free energy

ΔG change in Gibbs free energy
ΔH enthalpy change
ΔΔGbind binding free energy
ΔGcomplex total free energy of the protein−ligand

complex
ΔGprotein total free energy of the protein in solvent
ΔGligand total free energy of the ligand in solvent
ΔGsol

polar polar solvation energy
ΔGsol

nonpolar nonpolar solvation energy
ϵ1 dielectric constant of the solute
ϵ2 dielectric constant of the solvent

ηi instantaneous configuration at the ith compo-
nent

ϵ(r) dielectric constant
Γ generalized Kirchhoff matrix
κ inverse Debye length
ϕ(r) Electrostatic potential
Φ kernel functions such as exponential functions

and Lorentz functions
ψ Kohn−Sham orbital
Ψ(r, r2, ..., rN) wave function satisfying the many-electron

time-independent Schrödinger equation
Ψ* complex conjugate of Ψ
∂Ω molecular surface

Mathematical Symbols in Sections 2.2, 2.3, and 2.4

A adjacency matrix of graph
at activation at time-step t
b bias (scalar)
b bias (vector)
ct cell gate at time-step t
cv correlation of volume between sequences
cρ correlation between polarity
ct̃ temporal cell gate at time-step t
Cv
b betweenness centrality of a vertex v

Ci
c closeness centrality of the ith vertex of a connected

graph
Cv
e eigenvector centrality of a vertex v

Ck(K) chain group
Ci
s subgraph centrality of the ith vertex

Ci
t topological coefficient of graph corresponding to its

ith vertex
d distance
D edge density of graph
Dh the degree heterogeneity
E set of edges of graph
ft forget gate state at time-step t
G graph
Hk

t,p p-persistent kth homology group of Kt

im image of a homomorphism
k nearest data points in k-NN or the length in the k-tuple

method
K simplecial complex in section 2.2.3 or the number of

clusters in K-means clustering
ker kernal of a homomorphism
l number of classes/categories
⟨L⟩ average path length of graph
m feature size
n sample size
ne number of edges in graph
nv number of nodes in graph
Nl(v) number of walks of length l that start at vertex v and

end elsewhere
ot output gate at time-step t
rt reset gate at time-step t
Ri
FRI atomic flexibility−rigidity index

S similarity score
ut update gate at time-step t
v a sequence
v̂ fast Fourier transform of a sequence v
w weights in vector form
wT transpose of w
W weights in matrix form
xi ith sample of the training set
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xt input vector at time-step t
yi ith label of the training set
ŷi prediction of the machine learning model correspond-

ing to xi
yt output at time-step t
ŷt prediction at time-step t
β scalar coefficient for the momentum
η learning rate
λ penalty constant
Φ kernel function
ρ polarity of amino acid
σ activation function
σk k-simplex
θij communicability angle between the ith and jth vertices

Abbreviations

+ssRNA positive-sense single-stranded RNA
5′ UTR 5′ untranslated region
ACE-I angiotensin-I converting enzyme
ACE2 angiotensin converting enzyme 2
AI artificial intelligence
AMBER assisted model building with energy refine-

ment
ANAKIN-ME accurate neural network engine for molecular

energies
ANM anisotropic network model
ANN artificial neural network
AP-MS affinity purification-mass spectrometry
APBS adaptive Poisson−Boltzmann solver
ATF6 activating transcription factor 6
BEL biological expression language
BEM boundary element method
BFE binding free energy
BiLSTM bidirectional LSTM
BLAST basic local alignment search tool
BST-2 bone marrow stromal antigen 2
C-terminus carboxyl-terminus
CASP critical assessment of protein structure pre-

diction
CCP convalescent plasma
CD8 cluster of differentiation 8
CD8+ cytotoxic T cells with CD8 surface protein
CFR case fatality rate
CHARMM chemistry at Harvard macromolecular me-

chanics
ChEMBL chemical database of bioactive molecules with

druglike properties
CMap connectivity map
CMC chemical Monte Carlo
CNN convolutional neural network
CoMSIA comparative molecular similarity indices anal-

ysis
COVAM coronavirus antigen microarray
COVID-19 coronavirus disease 2019
CpHMD constant pH molecular dynamics
CPP cell penetrating peptide
CsA cyclosporin A
CTSL cathepsins L
CUL2 cullin 2
DAVID Database for Annotation, Visualization and

Integrated Discovery
DD deep docking
DEG differentially expressed gene

DNM1L dynamin-1 like
DNN deep neural network
DPP4 dipeptidyl-peptidase 4
dsDNA double-stranded DNA
dsRNA double-stranded RNA
DT decision tree
DvD drug versus disease
E envelope
EGFR epidermal growth factor receptor
ENM elastic network model
ER endoplasmic reticulum
ERGIC ER-Golgi-intermediate
EVD extreme value distribution
FDM finite difference method
FEM finite element method
FEP free energy perturbation
FFT fast Fourier transform
FGA fibrinogen alpha
FGB fibrinogen beta
FGG fibrinogen gamma
FRI flexibility−rigidity index
GaMD Gaussian accelerated MD
GB generalized Born
GBDT gradient boosting decision tree
gGNM generalized GNM
GNM Gaussian network model
GNN graph neural network
GR hydrochloric acid reagent grade
GRP glucose regulated protein
GRU gated recurrent unit
HBEC human bronchial epithelial cell
HCQ hydroxychloroquine
Helicase nonstructural protein 13
HSPs high-scoring pairs
IFN interferon
IFN-I type-I interferons
IFNAR1 IFN alpha-receptor subunit 1
IgG immunoglobulin G
IL interleukin
IRF interferon regulatory factor
ISG interferon stimulated gene
ITCH itchy E3 ubiquitin protein ligase
ITGAL integrin, alpha L
KL Kullback−Leibler
k-NN k-nearest neighbors
LIE linear interaction energy
LNP lipid nanoparticle
LSTM long short-term memory
M membrane
mAb monoclonal anitbody
MAFFT multiple alignment using fast Fourier trans-

form
MAVS mitochondrial antiviral-signaling protein
MC Monte Carlo
MCH major histocompatibility complex
MCMC Markov chain Monte Carlo
MDS multidimensional scaling
MERS-CoV middle east respiratory syndrome coronavirus
MIBPB matched interface and boundary (MIB)-based

Poisson−Boltzmann
MiST mass spectrometry interaction statistics
MM-GBSA molecular mechanics generalized Born surface

area
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MM-PBSA molecular mechanics Poisson−Boltzmann sur-
face area

Mpro/3CLpro main protease
MR molecular replacement
MSA multiple sequence alignment
MT-DTI molecule transformer−drug target interaction
MUSCLE multiple sequence comparison by log-expect-

ation
N nucleocapsid
nAChRs nicotinic acetylcholine receptors
NCBI National Center for Biotechnology Informa-

tion
NendoU nidoviral RNA uridylate-specific endoribonu-

clease
NF-κB nuclear factor kappa B
NLP natural language processing
NLS nuclear localization sequence
NMA normal-mode analysis
NPACT naturally occurring plant-based anticancer

compound-activity-target database
nsp nonstructural protein
ORF open reading frame
PB Poisson−Boltzmann
PCA principal component analysis
pIC50 negative log of the IC50 value when converted

to molar
PLpro papain-like protease
pp1a polyprotein 1a
pp1b polyprotein 1ab
PPI protein−protein interaction
PRO-FEC pictorial representation of free-energy compo-

nent
QM/MM quantum mechanics/molecular mechanics
RBD receptor-binding domain
RBF radial basis function
RdRp RNA-dependent RNA polymerase/nonstruc-

tural protein 12
RF random forest
RNN recurrent neural network
RNP ribonucleocapsid
RDC residual dipolar coupling
RWR random walk with restart
S spike
SARS-CoV severe acute respiratory syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus

2
SGD stochastic gradient descent
siRNA small interfering RNA
SNP single-nucleotide polymorphism
SPZ sulphoridazine
ssRNA single-strand RNA
STAT1 signal transducer and activator of transcription

1
SVM support vector machine
t-SNE t-distributed stochastic neighbor embedding
TABIPB treecode-accelerated boundary integral
TCR traditional Chinese medicine
TDA topological data analysis
TI thermodynamic integration
TMPRSS2 transmembrane protease serine 2
UMAP uniform manifold approximation and projec-

tion
UNRES united-residue

UPGMA unweighted pair group method with arithmetic
mean

UPR unfolded protein response
USDA United States Department of Agriculture
WSAS work and social adjustment scale
Y2H yeast two-hybrid
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(125) Hospital, A.; Goñi, J. R.; Orozco, M.; Gelpí, J. L. Molecular
dynamics simulations: advances and applications. Adv. Appl. Bioin-
form. Chem. 2015, 8, 37.
(126) Geng, W.; Wei, G.-W. Multiscale molecular dynamics using
the matched interface and boundary method. J. Comput. Phys. 2011,
230, 435−457.
(127) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.;
Dror, R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.;
Shan, Y.; et al. Atomic-level characterization of the structural
dynamics of proteins. Science 2010, 330, 341−346.
(128) Adcock, S. A.; McCammon, J. A. Molecular dynamics: survey
of methods for simulating the activity of proteins. Chem. Rev. 2006,
106, 1589−1615.
(129) Allen, M. P.; et al. Introduction to molecular dynamics
simulation. Comput. Soft Matter 2004, 23, 1−28.
(130) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.
M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.;
Kollman, P. A. A second generation force field for the simulation of
proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995,
117, 5179−5197.
(131) MacKerell, A. D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.
L., Jr; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha,
S.; et al. All-atom empirical potential for molecular modeling and
dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586−3616.
(132) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.;
Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.;

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11335

https://doi.org/10.1002/jcc.10126
https://doi.org/10.1002/jcc.10126
https://doi.org/10.1021/ct600085e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct600085e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr9904009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr9904009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0009-2614(96)00349-1
https://doi.org/10.1016/0009-2614(96)00349-1
https://doi.org/10.1016/0009-2614(96)00349-1
https://doi.org/10.1007/s11538-010-9511-x
https://doi.org/10.1016/j.jcp.2010.06.036
https://doi.org/10.1016/j.jcp.2010.06.036
https://doi.org/10.1021/jp994072s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp994072s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pro.3280
https://doi.org/10.1002/jcc.21646
https://doi.org/10.1002/jcc.21646
https://doi.org/10.1016/j.jcp.2005.07.022
https://doi.org/10.1016/j.jcp.2005.07.022
https://doi.org/10.1016/j.jcp.2005.07.022
https://doi.org/10.1021/acs.jcim.7b00192?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.7b00192?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.7b00192?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.540090407
https://doi.org/10.1002/jcc.540090407
https://doi.org/10.1002/jcc.540090407
https://doi.org/10.1002/jcc.20769
https://doi.org/10.1002/jcc.20769
https://doi.org/10.1017/S003358351200011X
https://doi.org/10.1017/S003358351200011X
https://doi.org/10.1093/nar/gkn314
https://doi.org/10.1093/nar/gkn314
https://doi.org/10.1093/nar/gkn314
https://doi.org/10.1147/rd.453.0427
https://doi.org/10.1147/rd.453.0427
https://doi.org/10.1147/rd.453.0427
https://doi.org/10.1016/0021-9991(91)90043-K
https://doi.org/10.1016/0021-9991(91)90043-K
https://doi.org/10.1021/acs.chemrev.9b00055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.9b00055?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/2046-1682-5-9
https://doi.org/10.1186/2046-1682-5-9
https://doi.org/10.1002/jcc.1161
https://doi.org/10.1002/jcc.1161
https://doi.org/10.1002/jcc.1161
https://doi.org/10.1002/jcc.1161
https://doi.org/10.1073/pnas.181342398
https://doi.org/10.1073/pnas.181342398
https://doi.org/10.1063/1.2768064
https://doi.org/10.1063/1.2768064
https://doi.org/10.1016/j.jcp.2013.03.056
https://doi.org/10.1016/j.jcp.2013.03.056
https://doi.org/10.1016/j.jcp.2013.03.056
https://doi.org/10.1016/j.jcp.2018.07.011
https://doi.org/10.1016/j.jcp.2018.07.011
https://doi.org/10.37175/stemedicine.v1i2.41
https://doi.org/10.37175/stemedicine.v1i2.41
https://doi.org/10.3389/fgene.2020.587829
https://doi.org/10.3389/fgene.2020.587829
https://doi.org/10.3389/fgene.2020.587829
https://doi.org/10.1021/acs.jpclett.0c01064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01064?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/22221751.2020.1781551
https://doi.org/10.1080/22221751.2020.1781551
https://doi.org/10.1080/22221751.2020.1781551
https://doi.org/10.3389/fmedt.2020.553478
https://doi.org/10.3389/fmedt.2020.553478
https://doi.org/10.1039/D1SM00232E
https://doi.org/10.1039/D1SM00232E
https://doi.org/10.1039/D1SM00232E
https://doi.org/10.1063/5.0065147
https://doi.org/10.1063/5.0065147
https://doi.org/10.1063/5.0065147
https://doi.org/10.1093/nar/26.18.4280
https://doi.org/10.1093/nar/26.18.4280
https://doi.org/10.1016/j.sbi.2004.01.005
https://doi.org/10.1016/j.sbi.2004.01.005
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.2147/AABC.S70333
https://doi.org/10.2147/AABC.S70333
https://doi.org/10.1016/j.jcp.2010.09.031
https://doi.org/10.1016/j.jcp.2010.09.031
https://doi.org/10.1126/science.1187409
https://doi.org/10.1126/science.1187409
https://doi.org/10.1021/cr040426m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr040426m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00124a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00124a002?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp973084f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp973084f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


DiStasio, R. A., Jr; et al. Current status of the AMOEBA polarizable
force field. J. Phys. Chem. B 2010, 114, 2549−2564.
(133) Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.
E.; Kolinski, A. Coarse-grained protein models and their applications.
Chem. Rev. 2016, 116, 7898−7936.
(134) Ueda, Y.; Taketomi, H.; Go̅, N. Studies on protein folding,
unfolding, and fluctuations by computer simulation. II. A. Three-
dimensional lattice model of lysozyme. Biopolymers 1978, 17, 1531−
1548.
(135) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.;
De Vries, A. H. The MARTINI force field: coarse grained model for
biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812−7824.
(136) Maisuradze, G. G.; Senet, P.; Czaplewski, C.; Liwo, A.;
Scheraga, H. A. Investigation of protein folding by coarse-grained
molecular dynamics with the UNRES force field. J. Phys. Chem. A
2010, 114, 4471−4485.
(137) Mahoney, M. W.; Jorgensen, W. L. A five-site model for liquid
water and the reproduction of the density anomaly by rigid,
nonpolarizable potential functions. J. Chem. Phys. 2000, 112, 8910−
8922.
(138) Berendsen, H.; Grigera, J.; Straatsma, T. The missing term in
effective pair potentials. J. Phys. Chem. 1987, 91, 6269−6271.
(139) Massova, I.; Kollman, P. A. Computational alanine scanning to
probe protein- protein interactions: a novel approach to evaluate
binding free energies. J. Am. Chem. Soc. 1999, 121, 8133−8143.
(140) Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA
methods to estimate ligand-binding affinities. Expert Opin Drug Discov
2015, 10, 449−461.
(141) Lu, N.; Kofke, D. A. Accuracy of free-energy perturbation
calculations in molecular simulation. I. Modeling. J. Chem. Phys. 2001,
114, 7303−7311.
(142) Straatsma, T.; Berendsen, H. Free energy of ionic hydration:
Analysis of a thermodynamic integration technique to evaluate free
energy differences by molecular dynamics simulations. J. Chem. Phys.
1988, 89, 5876−5886.
(143) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc.
Natl. Acad. Sci. U. S. A. 2002, 99, 12562−12566.
(144) Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.;
Molnar, F.; Wriggers, W.; Schulten, K. Computational molecular
dynamics: challenges, methods, ideas; Springer, 1999; pp 39−65.
(145) Wang, J.; Hou, T. Develop and test a solvent accessible surface
area-based model in conformational entropy calculations. J. Chem. Inf
Model 2012, 52, 1199−1212.
(146) Sztain, T.; Amaro, R.; McCammon, J. A. Elucidation of cryptic
and allosteric pockets within the SARS-CoV-2 main protease. J. Chem.
Inf Model 2021, 61, 3495−3501.
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(410) Bello, M.; Martínez-Muñoz, A.; Balbuena-Rebolledo, I.
Identification of saquinavir as a potent inhibitor of dimeric SARS-
CoV2 main protease through MM/GBSA. J. Mol. Model. 2020, 26, 1−
11.
(411) Sang, P.; Tian, S.-H.; Meng, Z.-H.; Yang, L.-Q. Anti-HIV drug
repurposing against SARS-CoV-2. RSC Adv. 2020, 10, 15775−15783.
(412) Ancy, I.; Sivanandam, M.; Kumaradhas, P. Possibility of HIV-
1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-
CoV-2 main protease: a molecular docking, molecular dynamics and
binding free energy simulation study. J. Biomol. Struct. Dyn. 2021, 39,
5368−5375.
(413) Khan, A.; Ali, S. S.; Khan, M. T.; Saleem, S.; Ali, A.; Suleman,
M.; Babar, Z.; Shafiq, A.; Khan, M.; Wei, D.-Q. Combined drug
repurposing and virtual screening strategies with molecular dynamics
simulation identified potent inhibitors for SARS-CoV-2 main protease
(3CLpro). J. Biomol. Struct. Dyn. 2021, 39, 4659−4670.
(414) Mukherjee, S.; Dasgupta, S.; Adhikary, T.; Adhikari, U.; Panja,
S. S. Structural insight to hydroxychloroquine-3C-like proteinase

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11343

https://doi.org/10.1016/j.bcab.2021.102178
https://doi.org/10.1016/j.bcab.2021.102178
https://doi.org/10.1016/j.bcab.2021.102178
https://doi.org/10.1039/D1RA04820A
https://doi.org/10.1039/D1RA04820A
https://doi.org/10.1039/D1RA04820A
https://doi.org/10.1038/s41598-021-02280-5
https://doi.org/10.1038/s41598-021-02280-5
https://doi.org/10.1016/j.compbiomed.2021.105171
https://doi.org/10.1016/j.compbiomed.2021.105171
https://doi.org/10.1002/jcb.30174
https://doi.org/10.1002/jcb.30174
https://doi.org/10.1002/jcb.30174
https://doi.org/10.1002/jcb.30174
https://doi.org/10.1016/j.compbiomed.2021.105183
https://doi.org/10.1016/j.compbiomed.2021.105183
https://doi.org/10.1016/j.compbiomed.2021.105183
https://doi.org/10.1016/j.jmgm.2021.108021
https://doi.org/10.1016/j.jmgm.2021.108021
https://doi.org/10.1093/bib/bbaa209
https://doi.org/10.1093/bib/bbaa209
https://doi.org/10.1080/07391102.2021.1891141
https://doi.org/10.3390/biology10010002
https://doi.org/10.3390/biology10010002
https://doi.org/10.3390/biology10010002
https://doi.org/10.1080/07391102.2021.1927845
https://doi.org/10.1080/07391102.2021.1927845
https://doi.org/10.1080/07391102.2021.1927845
https://doi.org/10.1016/j.compbiomed.2021.104686
https://doi.org/10.1016/j.compbiomed.2021.104686
https://doi.org/10.1016/j.compbiomed.2021.104686
https://doi.org/10.1080/07391102.2021.1897680
https://doi.org/10.1080/07391102.2021.1897680
https://doi.org/10.1080/07391102.2021.1897680
https://doi.org/10.1002/slct.202100854
https://doi.org/10.1002/slct.202100854
https://doi.org/10.1002/slct.202100854
https://doi.org/10.1007/s10930-020-09945-6
https://doi.org/10.1007/s10930-020-09945-6
https://doi.org/10.1007/s10930-020-09945-6
https://doi.org/10.1080/07391102.2021.1896388
https://doi.org/10.1080/07391102.2021.1896388
https://doi.org/10.1080/07391102.2021.1896388
https://doi.org/10.1016/j.arcmed.2020.09.013
https://doi.org/10.1016/j.arcmed.2020.09.013
https://doi.org/10.1080/07391102.2021.1905551
https://doi.org/10.1080/07391102.2021.1905551
https://doi.org/10.1080/07391102.2021.1905551
https://doi.org/10.1016/j.molstruc.2021.131124
https://doi.org/10.1016/j.molstruc.2021.131124
https://doi.org/10.1016/j.molstruc.2021.131124
https://doi.org/10.3389/fphar.2021.636989
https://doi.org/10.3389/fphar.2021.636989
https://doi.org/10.3389/fphar.2021.636989
https://doi.org/10.3389/fchem.2020.595097
https://doi.org/10.3389/fchem.2020.595097
https://doi.org/10.3389/fchem.2020.595097
https://doi.org/10.1080/07391102.2021.1948447
https://doi.org/10.1080/07391102.2021.1948447
https://doi.org/10.1080/07391102.2021.1948447
https://doi.org/10.1080/07391102.2021.1885495
https://doi.org/10.1080/07391102.2021.1885495
https://doi.org/10.1080/07391102.2021.1885495
https://doi.org/10.1080/07391102.2021.1946716
https://doi.org/10.1080/07391102.2021.1946716
https://doi.org/10.1080/07391102.2021.1946716
https://doi.org/10.1007/s40203-021-00101-1
https://doi.org/10.1007/s40203-021-00101-1
https://doi.org/10.1007/s40203-021-00101-1
https://doi.org/10.1080/07391102.2021.1955742
https://doi.org/10.1080/07391102.2021.1955742
https://doi.org/10.1080/07391102.2021.1955742
https://doi.org/10.1080/07391102.2021.1958700
https://doi.org/10.1080/07391102.2021.1958700
https://doi.org/10.1080/07391102.2021.1958700
https://doi.org/10.1080/07391102.2021.1958700
https://doi.org/10.18632/aging.202703
https://doi.org/10.18632/aging.202703
https://doi.org/10.18632/aging.202703
https://doi.org/10.1021/acs.biochem.0c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.0c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.0c00160?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s00894-020-04600-4
https://doi.org/10.1007/s00894-020-04600-4
https://doi.org/10.1039/D0RA01899F
https://doi.org/10.1039/D0RA01899F
https://doi.org/10.1080/07391102.2020.1786459
https://doi.org/10.1080/07391102.2020.1786459
https://doi.org/10.1080/07391102.2020.1786459
https://doi.org/10.1080/07391102.2020.1786459
https://doi.org/10.1080/07391102.2020.1779128
https://doi.org/10.1080/07391102.2020.1779128
https://doi.org/10.1080/07391102.2020.1779128
https://doi.org/10.1080/07391102.2020.1779128
https://doi.org/10.1080/07391102.2020.1804458
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


complexation from SARS-CoV-2: inhibitor modelling study through
molecular docking and MD-simulation study. J. Biomol. Struct. Dyn.
2021, 39, 7322−7334.
(415) Beura, S.; Chetti, P. In-silico strategies for probing
chloroquine based inhibitors against SARS-CoV-2. J. Biomol. Struct.
Dyn. 2021, 39, 3747−3739.
(416) Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Kumar, R. V.;
Dass, S. K.; Chandra, R.; Singh, P. Understanding the binding affinity
of noscapines with protease of SARS-CoV-2 for COVID-19 using MD
simulations at different temperatures. J. Biomol. Struct. Dyn. 2021, 39,
2659−2672.
(417) Nayeem, S. M.; Reddy, M. S. Target SARS-CoV-2:
Computation of Binding energies with drugs of Dexamethasone/
Umifenovir by Molecular Dynamics using OPLS-AA force field. Res.
Biomed. Eng. 2021, 1−10.
(418) Ibrahim, M. A.; Abdeljawaad, K. A.; Abdelrahman, A. H.;
Hegazy, M.-E. F. Natural-like products as potential SARS-CoV-2
Mpro inhibitors: in-silico drug discovery. J. Biomol. Struct. Dyn. 2021,
39, 5722−5734.
(419) Kapusta, K.; Kar, S.; Collins, J. T.; Franklin, L. M.;
Kolodziejczyk, W.; Leszczynski, J.; Hill, G. A. Protein reliability
analysis and virtual screening of natural inhibitors for SARS-CoV-2
main protease (Mpro) through docking, molecular mechanic &
dynamic, and ADMET profiling. J. Biomol. Struct. Dyn. 2021, 39,
6810−6827.
(420) Prajapati, J.; Patel, R.; Goswami, D.; Saraf, M.; Rawal, R. M.
Sterenin M as a potential inhibitor of SARS-CoV-2 main protease
identified from MeFSAT database using molecular docking, molecular
dynamics simulation and binding free energy calculation. Comput.
Biol. Med. 2021, 135, 104568.
(421) Mahmud, S.; Uddin, M. A. R.; Zaman, M.; Sujon, K. M.;
Rahman, M. E.; Shehab, M. N.; Islam, A.; Alom, M. W.; Amin, A.;
Akash, A. S.; et al. Molecular docking and dynamics study of natural
compound for potential inhibition of main protease of SARS-CoV-2.
J. Biomol. Struct. Dyn. 2021, 39, 6281−6289.
(422) El-Demerdash, A.; Al-Karmalawy, A. A.; Abdel-Aziz, T. M.;
Elhady, S. S.; Darwish, K. M.; Hassan, A. H. Investigating the
structure−activity relationship of marine natural polyketides as
promising SARS-CoV-2 main protease inhibitors. RSC Adv. 2021,
11, 31339−31363.
(423) Srivastav, A. K.; Jaiswal, J.; Kumar, U. In silico bioprospecting
of antiviral compounds from marine fungi and mushroom for rapid
development of nutraceuticals against SARS-CoV-2. J. Biomol. Struct
2021, 1−12.
(424) Patel, C. N.; Jani, S. P.; Jaiswal, D. G.; Kumar, S. P.; Mangukia,
N.; Parmar, R. M.; Rawal, R. M.; Pandya, H. A. Identification of
antiviral phytochemicals as a potential SARS-CoV-2 main protease
(Mpro) inhibitor using docking and molecular dynamics simulations.
Sci. Rep. 2021, 11, 1−13.
(425) Aminah, N. S.; Abdjan, M. I.; Wardana, A. P.; Kristanti, A. N.;
Siswanto, I.; Rakhman, K. A.; Takaya, Y. The dolabellane diterpenes
as potential inhibitors of the SARS-CoV-2 main protease: molecular
insight of the inhibitory mechanism through computational studies.
RSC Adv. 2021, 11, 39455−39466.
(426) Mishra, A.; Khan, W. H.; Rathore, A. S. Synergistic Effects of
Natural Compounds Toward Inhibition of SARS-CoV-2 3CL
Protease. J. Chem. Inf Model 2021, 61, 5708−5718.
(427) Zackria, A. A.; Pattabiraman, R.; Murthy, T.; Kumar, S. B.;
Mathew, B. B.; Biju, V. G. Computational screening of natural
compounds from Salvia plebeia R. Br. for inhibition of SARS-CoV-2
main protease. Vegetos 2021, 1−15.
(428) Mohapatra, P. K.; Chopdar, K. S.; Dash, G. C.; Mohanty, A.
K.; Raval, M. K. In silico screening and covalent binding of
phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID
19) main protease. J. Biomol. Struct 2021, 1−10.
(429) Joshi, T.; Bhat, S.; Pundir, H.; Chandra, S. Identification of
Berbamine, Oxyacanthine and Rutin from Berberis asiatica as anti-
SARS-CoV-2 compounds: An in silico study. J. Mol. Graph. Model.
2021, 109, 108028.

(430) Rakshit, M.; Muduli, S.; Srivastav, P. P.; Mishra, S.
Pomegranate peel polyphenols prophylaxis against SARS-CoV-2
main protease by in-silico docking and molecular dynamics study. J.
Biomol. Struct 2021, 1−15.
(431) Jha, R. K.; Khan, R. J.; Parthiban, A.; Singh, E.; Jain, M.;
Amera, G. M.; Singh, R. P.; Ramachandran, P.; Ramachandran, R.;
Sachithanandam, V.; et al. Identifying the natural compound Catechin
from tropical mangrove plants as a potential lead candidate against
3CLpro from SARS-CoV-2: An integrated in silico approach. J.
Biomol. Struct 2021, 1−20.
(432) Tolah, A. M.; Altayeb, L. M.; Alandijany, T. A.; Dwivedi, V.
D.; El-Kafrawy, S. A.; Azhar, E. I. Computational and In Vitro
Experimental Investigations Reveal Anti-Viral Activity of Licorice and
Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus
2. Pharmaceuticals 2021, 14, 1216.
(433) Lingwan, M.; Shagun, S.; Pahwa, F.; Kumar, A.; Verma, D. K.;
Pant, Y.; Kamatam, L. V.; Kumari, B.; Nanda, R. K.; Sunil, S.; et al.
Phytochemical rich Himalayan Rhododendron arboreum petals
inhibit SARS-CoV-2 infection in vitro. J. Biomol. Struct 2021, 1−11.
(434) De Oliveira, O. V.; Cristina Andreazza Costa, M.; Marques da
Costa, R.; Giordano Viegas, R.; Paluch, A. S.; Miguel Castro Ferreira,
M. Traditional herbal compounds as candidates to inhibit the SARS-
CoV-2 main protease: an in silico study. J. Biomol. Struct 2022, 1−14.
(435) Mahmud, S.; Uddin, M. A. R.; Paul, G. K.; Shimu, M. S. S.;
Islam, S.; Rahman, E.; Islam, A.; Islam, M. S.; Promi, M. M.; Emran,
T. B.; et al. Virtual screening and molecular dynamics simulation
study of plant-derived compounds to identify potential inhibitors of
main protease from SARS-CoV-2. Brief. Bioinformatics 2021, 22,
1402−1414.
(436) Shah, S.; Chaple, D.; Arora, S.; Yende, S.; Mehta, C.; Nayak,
U. Prospecting for Cressa cretica to treat COVID-19 via in silico
molecular docking models of the SARS-CoV-2. J. Biomol. Struct 2021,
1−10.
(437) Ahamad, S.; Kanipakam, H.; Birla, S.; Ali, M. S.; Gupta, D.
Screening Malaria-box compounds to identify potential inhibitors
against SARS-CoV-2 Mpro, using molecular docking and dynamics
simulation studies. Eur. J. Pharmacol. 2021, 890, 173664.
(438) Verma, S.; Patel, C. N.; Chandra, M. Identification of novel
inhibitors of SARS-CoV-2 main protease (Mpro) from Withania sp.
by molecular docking and molecular dynamics simulation. J. Comput.
Chem. 2021, 42, 1861.
(439) Sen, D.; Bhaumik, S.; Debnath, P.; Debnath, S. Potentiality of
Moringa oleifera against SARS-CoV-2: identified by a rational
computer aided drug design method. J. Biomol. Struct 2021, 1−18.
(440) Mathpal, S.; Sharma, P.; Joshi, T.; Joshi, T.; Pande, V.;
Chandra, S. Screening of potential bio-molecules from Moringa olifera
against SARS-CoV-2 main protease using computational approaches.
J. Biomol. Struct 2021, 1−12.
(441) Masand, V. H.; Sk, M. F.; Kar, P.; Rastija, V.; Zaki, M. E.
Identification of Food Compounds as inhibitors of SARS-CoV-2 main
protease using molecular docking and molecular dynamics simu-
lations. Chemom. Intell. Lab. Syst. 2021, 217, 104394.
(442) Kumar, B.; Parasuraman, P.; Murthy, T. P. K.; Murahari, M.;
Chandramohan, V. In silico screening of therapeutic potentials from
Strychnos nux-vomica against the dimeric main protease (Mpro)
structure of SARS-CoV-2. J. Biomol. Struct 2021, 1−19.
(443) Gogoi, B.; Chowdhury, P.; Goswami, N.; Gogoi, N.; Naiya,
T.; Chetia, P.; Mahanta, S.; Chetia, D.; Tanti, B.; Borah, P.; et al.
Identification of potential plant-based inhibitor against viral proteases
of SARS-CoV-2 through molecular docking, MM-PBSA binding
energy calculations and molecular dynamics simulation. Mol. Divers.
2021, 25, 1963−1977.
(444) Rudrapal, M.; Issahaku, A. R.; Agoni, C.; Bendale, A. R.;
Nagar, A.; Soliman, M. E.; Lokwani, D. In silico screening of
phytopolyphenolics for the identification of bioactive compounds as
novel protease inhibitors effective against SARS-CoV-2. J. Biomol.
Struct 2021, 1−17.
(445) Mahmud, S.; Mita, M. A.; Biswas, S.; Paul, G. K.; Promi, M.
M.; Afrose, S.; Hasan, R.; Shimu, S. S.; Zaman, S.; Uddin, S.; et al.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11344

https://doi.org/10.1080/07391102.2020.1804458
https://doi.org/10.1080/07391102.2020.1804458
https://doi.org/10.1080/07391102.2020.1772111
https://doi.org/10.1080/07391102.2020.1772111
https://doi.org/10.1080/07391102.2020.1752310
https://doi.org/10.1080/07391102.2020.1752310
https://doi.org/10.1080/07391102.2020.1752310
https://doi.org/10.1007/s42600-020-00119-y
https://doi.org/10.1007/s42600-020-00119-y
https://doi.org/10.1007/s42600-020-00119-y
https://doi.org/10.1080/07391102.2020.1790037
https://doi.org/10.1080/07391102.2020.1790037
https://doi.org/10.1080/07391102.2020.1806930
https://doi.org/10.1080/07391102.2020.1806930
https://doi.org/10.1080/07391102.2020.1806930
https://doi.org/10.1080/07391102.2020.1806930
https://doi.org/10.1016/j.compbiomed.2021.104568
https://doi.org/10.1016/j.compbiomed.2021.104568
https://doi.org/10.1016/j.compbiomed.2021.104568
https://doi.org/10.1080/07391102.2020.1796808
https://doi.org/10.1080/07391102.2020.1796808
https://doi.org/10.1039/D1RA05817G
https://doi.org/10.1039/D1RA05817G
https://doi.org/10.1039/D1RA05817G
https://doi.org/10.1080/07391102.2021.2023048
https://doi.org/10.1080/07391102.2021.2023048
https://doi.org/10.1080/07391102.2021.2023048
https://doi.org/10.1038/s41598-021-99165-4
https://doi.org/10.1038/s41598-021-99165-4
https://doi.org/10.1038/s41598-021-99165-4
https://doi.org/10.1039/D1RA07584E
https://doi.org/10.1039/D1RA07584E
https://doi.org/10.1039/D1RA07584E
https://doi.org/10.1021/acs.jcim.1c00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s42535-021-00304-z
https://doi.org/10.1007/s42535-021-00304-z
https://doi.org/10.1007/s42535-021-00304-z
https://doi.org/10.1080/07391102.2021.2007170
https://doi.org/10.1080/07391102.2021.2007170
https://doi.org/10.1080/07391102.2021.2007170
https://doi.org/10.1016/j.jmgm.2021.108028
https://doi.org/10.1016/j.jmgm.2021.108028
https://doi.org/10.1016/j.jmgm.2021.108028
https://doi.org/10.1080/07391102.2021.1979427
https://doi.org/10.1080/07391102.2021.1979427
https://doi.org/10.1080/07391102.2021.1988710
https://doi.org/10.1080/07391102.2021.1988710
https://doi.org/10.1080/07391102.2021.1988710
https://doi.org/10.3390/ph14121216
https://doi.org/10.3390/ph14121216
https://doi.org/10.3390/ph14121216
https://doi.org/10.3390/ph14121216
https://doi.org/10.1080/07391102.2021.2021287
https://doi.org/10.1080/07391102.2021.2021287
https://doi.org/10.1080/07391102.2021.2023646
https://doi.org/10.1080/07391102.2021.2023646
https://doi.org/10.1093/bib/bbaa428
https://doi.org/10.1093/bib/bbaa428
https://doi.org/10.1093/bib/bbaa428
https://doi.org/10.1080/07391102.2021.1872419
https://doi.org/10.1080/07391102.2021.1872419
https://doi.org/10.1016/j.ejphar.2020.173664
https://doi.org/10.1016/j.ejphar.2020.173664
https://doi.org/10.1016/j.ejphar.2020.173664
https://doi.org/10.1002/jcc.26717
https://doi.org/10.1002/jcc.26717
https://doi.org/10.1002/jcc.26717
https://doi.org/10.1080/07391102.2021.1898475
https://doi.org/10.1080/07391102.2021.1898475
https://doi.org/10.1080/07391102.2021.1898475
https://doi.org/10.1080/07391102.2021.1936183
https://doi.org/10.1080/07391102.2021.1936183
https://doi.org/10.1016/j.chemolab.2021.104394
https://doi.org/10.1016/j.chemolab.2021.104394
https://doi.org/10.1016/j.chemolab.2021.104394
https://doi.org/10.1080/07391102.2021.1902394
https://doi.org/10.1080/07391102.2021.1902394
https://doi.org/10.1080/07391102.2021.1902394
https://doi.org/10.1007/s11030-021-10211-9
https://doi.org/10.1007/s11030-021-10211-9
https://doi.org/10.1007/s11030-021-10211-9
https://doi.org/10.1080/07391102.2021.1944909
https://doi.org/10.1080/07391102.2021.1944909
https://doi.org/10.1080/07391102.2021.1944909
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Molecular docking and dynamics study to explore phytochemical
ligand molecules against the main protease of SARS-CoV-2 from
extensive phytochemical datasets. Expert Rev. Clin. Pharmacol. 2021,
14, 1305−1315.
(446) Bhardwaj, V. K.; Singh, R.; Das, P.; Purohit, R. Evaluation of
acridinedione analogs as potential SARS-CoV-2 main protease
inhibitors and their comparison with repurposed anti-viral drugs.
Comput. Biol. Med. 2021, 128, 104117.
(447) Cetin, A. In silico studies on stilbenolignan analogues as
SARS-CoV-2 Mpro inhibitors. Chem. Phys. Lett. 2021, 771, 138563.
(448) Bharadwaj, S.; El-Kafrawy, S. A.; Alandijany, T. A.; Bajrai, L.
H.; Shah, A. A.; Dubey, A.; Sahoo, A. K.; Yadava, U.; Kamal, M. A.;
Azhar, E. I.; et al. Structure-Based Identification of Natural Products
as SARS-CoV-2 Mpro Antagonist from Echinacea angustifolia Using
Computational Approaches. Viruses 2021, 13, 305.
(449) Kushwaha, P. P.; Singh, A. K.; Prajapati, K. S.; Shuaib, M.;
Gupta, S.; Kumar, S. Phytochemicals present in Indian ginseng
possess potential to inhibit SARS-CoV-2 virulence: A molecular
docking and MD simulation study. Microb. Pathog. 2021, 157,
104954.
(450) Ram, T. S.; Munikumar, M.; Raju, V. N.; Devaraj, P.; Boiroju,
N. K.; Hemalatha, R.; Prasad, P.; Gundeti, M.; Sisodia, B. S.; Pawar,
S.; et al. In silico evaluation of the compounds of the ayurvedic drug,
AYUSH-64, for the action against the SARS-CoV-2 main protease. J.
Ayurveda Integr Med. 2022, 13, 100413.
(451) Das, P.; Majumder, R.; Mandal, M.; Basak, P. In-Silico
approach for identification of effective and stable inhibitors for
COVID-19 main protease (Mpro) from flavonoid based phytochem-
ical constituents of Calendula officinalis. J. Biomol. Struct. Dyn. 2021,
39, 6265.
(452) Bhardwaj, V. K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit,
R.; Kumar, S. Identification of bioactive molecules from Tea plant as
SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2021,
39, 3449.
(453) Tripathi, M. K.; Singh, P.; Sharma, S.; Singh, T. P.;
Ethayathulla, A.; Kaur, P. Identification of bioactive molecule from
Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease
inhibitor. J. Biomol. Struct. Dyn. 2021, 39, 5668.
(454) Kumar, A.; Choudhir, G.; Shukla, S. K.; Sharma, M.; Tyagi, P.;
Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors
against main protease of COVID-19 using molecular modeling
approaches. J. Biomol. Struct. Dyn. 2021, 39, 3760.
(455) Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S.
Evaluation of green tea polyphenols as novel corona virus (SARS
CoV-2) main protease (Mpro) inhibitors−an in silico docking and
molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2020, 1−
13.
(456) Joshi, T.; Sharma, P.; Joshi, T.; Pundir, H.; Mathpal, S.;
Chandra, S. Structure-based screening of novel lichen compounds
against SARS Coronavirus main protease (Mpro) as potentials
inhibitors of COVID-19. Mol. Divers. 2021, 25, 1665−1677.
(457) Gupta, S.; Singh, A. K.; Kushwaha, P. P.; Prajapati, K. S.;
Shuaib, M.; Senapati, S.; Kumar, S. Identification of potential natural
inhibitors of SARS-CoV2 main protease by molecular docking and
simulation studies. J. Biomol. Struct. Dyn. 2021, 39, 4334−4345.
(458) Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S.
Identification of polyphenols from Broussonetia papyrifera as SARS
CoV-2 main protease inhibitors using in silico docking and molecular
dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021, 39,
6747−6760.
(459) Andrianov, A. M.; Kornoushenko, Y. V.; Karpenko, A. D.;
Bosko, I. P.; Tuzikov, A. V. Computational discovery of small drug-
like compounds as potential inhibitors of SARS-CoV-2 main protease.
J. Biomol. Struct. Dyn. 2021, 39, 5779−5791.
(460) Paula Vargas Ruiz, A.; Jimenez Avalos, G.; Delgado, N. E.;
Olivos Ramirez, G.; Sheen, P.; Quiliano, M.; Zimic, M.
Comprehensive virtual screening of 4.8 k flavonoids reveals novel
insights into allosteric inhibition of SARS-CoV-2 MPRO. Sci. Rep.
2022, 121, 337a.

(461) Arun, K.; Sharanya, C.; Abhithaj, J.; Francis, D.; Sadasivan, C.
Drug repurposing against SARS-CoV-2 using E-pharmacophore based
virtual screening, molecular docking and molecular dynamics with
main protease as the target. J. Biomol. Struct. Dyn. 2021, 39, 4647−
4658.
(462) Choudhary, M. I.; Shaikh, M.; tul-Wahab, A.; ur-Rahman, A.
In silico identification of potential inhibitors of key SARS-CoV-2 3CL
hydrolase (Mpro) via molecular docking, MMGBSA predictive
binding energy calculations, and molecular dynamics simulation.
PLoS One 2020, 15, No. e0235030.
(463) Khan, S. A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z.
Identification of chymotrypsin-like protease inhibitors of SARS-CoV-
2 via integrated computational approach. J. Biomol. Struct. Dyn. 2021,
39, 2607.
(464) Fakhar, Z.; Faramarzi, B.; Pacifico, S.; Faramarzi, S.
Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main
protease: An in-silico perspective of therapeutic targets against
COVID-19 pandemic. J. Biomol. Struct. Dyn. 2021, 39, 6171.
(465) Sharma, S.; Sharma, A.; Bhattacharyya, D.; Chauhan, R. S.
Computational identification of potential inhibitory compounds in
Indian medicinal and aromatic plant species against major
pathogenicity determinants of SARS-CoV-2. J. Biomol. Struct 2021,
1−19.
(466) Hassab, M. A. E.; Fares, M.; Amin, M. K.; Al-Rashood, S. T.;
Alharbi, A.; Eskandrani, R. O.; Alkahtani, H. M.; Eldehna, W. M.
Toward the Identification of Potential α-Ketoamide Covalent
Inhibitors for SARS-CoV-2 Main Protease: Fragment-Based Drug
Design and MM-PBSA Calculations. Processes 2021, 9, 1004.
(467) Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Kumar, R. V.;
Dass, S. K.; Chandra, R.; Singh, P. Understanding the binding affinity
of noscapines with protease of SARS-CoV-2 for COVID-19 using MD
simulations at different temperatures. J. Biomol. Struct 2021, 39,
2659−2672.
(468) Al-Sehemi, A. G.; Parulekar, R. S.; Pannipara, M.; PP, M. A.;
Zubaidha, P. K.; Bhatia, M. S.; Mohanta, T. K.; Al-Harrasi, A. In silico
evaluation of NO donor heterocyclic vasodilators as SARS-CoV-2
Mpro protein inhibitor. J. Biomol. Struct 2021, 1−18.
(469) Elmaaty, A. A.; Alnajjar, R.; Hamed, M. I.; Khattab, M.;
Khalifa, M. M.; Al-Karmalawy, A. A. Revisiting activity of some
glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease:
theoretical study. RSC Adv. 2021, 11, 10027−10042.
(470) Ahmed, M. Z.; Zia, Q.; Haque, A.; Alqahtani, A. S.; Almarfadi,
O. M.; Banawas, S.; Alqahtani, M. S.; Ameta, K. L.; Haque, S.
Aminoglycosides as potential inhibitors of SARS-CoV-2 main
protease: an in silico drug repurposing study on FDA-approved
antiviral and anti-infection agents. J. Infect. Public Health 2021, 14,
611−619.
(471) Al-Bustany, H. A.; Ercan, S.; Ince, E.; Pirinccioglu, N.
Investigation of angucycline compounds as potential drug candidates
against SARS Cov-2 main protease using docking and molecular
dynamic approaches. Mol. Divers. 2022, 26, 293.
(472) Fakhar, Z.; Khan, S.; AlOmar, S. Y.; Alkhuriji, A.; Ahmad, A.
ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease
enzyme against COVID-19. Sci. Rep. 2021, 11, 1−15.
(473) Johnson, T. O.; Adegboyega, A. E.; Iwaloye, O.; Eseola, O. A.;
Plass, W.; Afolabi, B.; Rotimi, D.; Ahmed, E. I.; Albrakati, A.; Batiha,
G. E. Computational study of the therapeutic potentials of a new
series of imidazole derivatives against SARS-CoV-2. JPS 2021, 147,
62.
(474) Noorbakhsh, A.; Askandar, R. H.; Alhagh, M. S.; Farshadfar,
C.; Seyedi, S. H.; Ahmadizad, M.; Rahimi, A.; Ardalan, N.; Koushki,
E. H. Prevention of SARS-CoV-2 Proliferation with a Novel and
Potent Main Protease Inhibitor by Docking, ADMET, MM-PBSA,
and Molecular Dynamics Simulation. J. Comput. Biophys. Chem. 2021,
20, 305−322.
(475) Rakib, A.; Nain, Z.; Sami, S. A.; Mahmud, S.; Islam, A.;
Ahmed, S.; Siddiqui, A. B. F.; Babu, S. O. F.; Hossain, P.; Shahriar, A.;
et al. A molecular modelling approach for identifying antiviral
selenium-containing heterocyclic compounds that inhibit the main

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11345

https://doi.org/10.1080/17512433.2021.1959318
https://doi.org/10.1080/17512433.2021.1959318
https://doi.org/10.1080/17512433.2021.1959318
https://doi.org/10.1016/j.compbiomed.2020.104117
https://doi.org/10.1016/j.compbiomed.2020.104117
https://doi.org/10.1016/j.compbiomed.2020.104117
https://doi.org/10.1016/j.cplett.2021.138563
https://doi.org/10.1016/j.cplett.2021.138563
https://doi.org/10.3390/v13020305
https://doi.org/10.3390/v13020305
https://doi.org/10.3390/v13020305
https://doi.org/10.1016/j.micpath.2021.104954
https://doi.org/10.1016/j.micpath.2021.104954
https://doi.org/10.1016/j.micpath.2021.104954
https://doi.org/10.1016/j.jaim.2021.02.004
https://doi.org/10.1016/j.jaim.2021.02.004
https://doi.org/10.1080/07391102.2020.1796799
https://doi.org/10.1080/07391102.2020.1796799
https://doi.org/10.1080/07391102.2020.1796799
https://doi.org/10.1080/07391102.2020.1796799
https://doi.org/10.1080/07391102.2020.1766572
https://doi.org/10.1080/07391102.2020.1766572
https://doi.org/10.1080/07391102.2020.1790425
https://doi.org/10.1080/07391102.2020.1790425
https://doi.org/10.1080/07391102.2020.1790425
https://doi.org/10.1080/07391102.2020.1772112
https://doi.org/10.1080/07391102.2020.1772112
https://doi.org/10.1080/07391102.2020.1772112
https://doi.org/10.1080/07391102.2020.1779818
https://doi.org/10.1080/07391102.2020.1779818
https://doi.org/10.1080/07391102.2020.1779818
https://doi.org/10.1007/s11030-020-10118-x
https://doi.org/10.1007/s11030-020-10118-x
https://doi.org/10.1007/s11030-020-10118-x
https://doi.org/10.1080/07391102.2020.1776157
https://doi.org/10.1080/07391102.2020.1776157
https://doi.org/10.1080/07391102.2020.1776157
https://doi.org/10.1080/07391102.2020.1802347
https://doi.org/10.1080/07391102.2020.1802347
https://doi.org/10.1080/07391102.2020.1802347
https://doi.org/10.1080/07391102.2020.1792989
https://doi.org/10.1080/07391102.2020.1792989
https://doi.org/10.1016/j.bpj.2021.11.1075
https://doi.org/10.1016/j.bpj.2021.11.1075
https://doi.org/10.1080/07391102.2020.1779819
https://doi.org/10.1080/07391102.2020.1779819
https://doi.org/10.1080/07391102.2020.1779819
https://doi.org/10.1371/journal.pone.0235030
https://doi.org/10.1371/journal.pone.0235030
https://doi.org/10.1371/journal.pone.0235030
https://doi.org/10.1080/07391102.2020.1751298
https://doi.org/10.1080/07391102.2020.1751298
https://doi.org/10.1080/07391102.2020.1801510
https://doi.org/10.1080/07391102.2020.1801510
https://doi.org/10.1080/07391102.2020.1801510
https://doi.org/10.1080/07391102.2021.2000500
https://doi.org/10.1080/07391102.2021.2000500
https://doi.org/10.1080/07391102.2021.2000500
https://doi.org/10.3390/pr9061004
https://doi.org/10.3390/pr9061004
https://doi.org/10.3390/pr9061004
https://doi.org/10.1080/07391102.2020.1752310
https://doi.org/10.1080/07391102.2020.1752310
https://doi.org/10.1080/07391102.2020.1752310
https://doi.org/10.1080/07391102.2021.2005682
https://doi.org/10.1080/07391102.2021.2005682
https://doi.org/10.1080/07391102.2021.2005682
https://doi.org/10.1039/D0RA10674G
https://doi.org/10.1039/D0RA10674G
https://doi.org/10.1039/D0RA10674G
https://doi.org/10.1016/j.jiph.2021.01.016
https://doi.org/10.1016/j.jiph.2021.01.016
https://doi.org/10.1016/j.jiph.2021.01.016
https://doi.org/10.1007/s11030-021-10219-1
https://doi.org/10.1007/s11030-021-10219-1
https://doi.org/10.1007/s11030-021-10219-1
https://doi.org/10.1038/s41598-020-79918-3
https://doi.org/10.1038/s41598-020-79918-3
https://doi.org/10.1016/j.jphs.2021.05.004
https://doi.org/10.1016/j.jphs.2021.05.004
https://doi.org/10.1142/S2737416521500149
https://doi.org/10.1142/S2737416521500149
https://doi.org/10.1142/S2737416521500149
https://doi.org/10.1093/bib/bbab045
https://doi.org/10.1093/bib/bbab045
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


protease of SARS-CoV-2: An in silico investigation. Brief.
Bioinformatics 2021, 22, 1476−1498.
(476) Sultan, A.; Ali, R.; Sultan, T.; Ali, S.; Khan, N. J.; Parganiha, A.
Circadian clock modulating small molecules repurposing as inhibitors
of SARS-CoV-2 Mpro for pharmacological interventions in COVID-
19 pandemic. Chronobiol. Int. 2021, 38, 971.
(477) Rajagopal, K.; Varakumar, P.; Aparna, B.; Byran, G.; Jupudi, S.
Identification of some novel oxazine substituted 9-anilinoacridines as
SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free
energy calculation and molecular dynamics studies. J. Biomol. Struct.
Dyn. 2021, 39, 5551.
(478) Al-Sehemi, A. G.; Pannipara, M.; Parulekar, R. S.; Patil, O.;
Choudhari, P. B.; Bhatia, M.; Zubaidha, P.; Tamboli, Y. Potential of
NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors:
in silico analysis. J. Biomol. Struct. Dyn. 2021, 39, 5804.
(479) Kumar, V.; Dhanjal, J. K.; Bhargava, P.; Kaul, A.; Wang, J.;
Zhang, H.; Kaul, S. C.; Wadhwa, R.; Sundar, D. Withanone and
withaferin-A are predicted to interact with transmembrane protease
serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J.
Biomol. Struct. Dyn. 2022, 40, 1−27.
(480) Pant, S.; Singh, M.; Ravichandiran, V.; Murty, U.; Srivastava,
H. K. Peptide-like and small-molecule inhibitors against COVID-19. J.
Biomol. Struct. Dyn. 2021, 39, 2904.
(481) Sk, M. F.; Roy, R.; Jonniya, N. A.; Poddar, S.; Kar, P.
Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2
main protease by using molecular dynamics simulations and free
energy calculations. J. Biomol. Struct. Dyn. 2021, 1−21.
(482) Al-Shar'i, N. A. Tackling COVID-19: identification of
potential main protease inhibitors via structural analysis, virtual
screening, molecular docking and MM-PBSA calculations. J. Biomol.
Struct. Dyn. 2021, 39, 6689.
(483) Zhao, T. Y.; Patankar, N. A. Tetracycline as an inhibitor to the
SARS-CoV-2. J. Cell. Biochem. 2021, 122, 752−759.
(484) Gimeno, A.; Mestres-Truyol, J.; Ojeda-Montes, M. J.; Macip,
G.; Saldivar-Espinoza, B.; Cereto-Massagué, A.; Pujadas, G.; Garcia-
Vallvé, S. Prediction of Novel Inhibitors of the Main Protease (M-
pro) of SARS-CoV-2 through Consensus Docking and Drug
Reposition. Int. J. Mol. Sci. 2020, 21, 3793.
(485) Hassanzadeh, K.; Perez Pena, H.; Dragotto, J.; Buccarello, L.;
Iorio, F.; Pieraccini, S.; Sancini, G.; Feligioni, M. Considerations
around the SARS-CoV-2 Spike Protein with particular attention to
COVID-19 brain infection and neurological symptoms. ACS Chem.
Neurosci. 2020, 11, 2361−2369.
(486) He, J.; Tao, H.; Yan, Y.; Huang, S.-Y.; Xiao, Y. Molecular
mechanism of evolution and human infection with sars-cov-2. Viruses
2020, 12, 428.
(487) Xue, Q.; Liu, X.; Pan, W.; Zhang, A.; Fu, J.; Jiang, G.
Computational Insights on Allosteric Effect and Dynamic Structural
Feature of SARS-COV-2 Spike Protein. Chem.Eur. J. 2022, 28,
e202104215.
(488) Jafary, F.; Jafari, S.; Ganjalikhany, M. R. In silico investigation
of critical binding pattern in SARS-CoV-2 spike protein with
angiotensin-converting enzyme 2. Sci. Rep. 2021, 11, 1−13.
(489) Spinello, A.; Saltalamacchia, A.; Magistrato, A. Is the rigidity
of SARS-CoV-2 spike receptor-binding motif the hallmark for its
enhanced infectivity? Insights from all-atom simulations. J. Phys.
Chem. Lett. 2020, 11, 4785−4790.
(490) Hati, S.; Bhattacharyya, S. Impact of Thiol−Disulfide Balance
on the Binding of COVID-19 Spike Protein with Angiotensin-
Converting Enzyme 2 Receptor. ACS omega 2020, 5, 16292−16298.
(491) Yan, F.-F.; Gao, F. Comparison of the binding characteristics
of SARS-CoV and SARS-CoV-2 RBDs to ACE2 at different
temperatures by MD simulations. Brief. Bioinformatics 2021, 22,
1122−1136.
(492) Shah, M.; Ahmad, B.; Choi, S.; Woo, H. G. Sequence variation
of SARS-CoV-2 spike protein may facilitate stronger interaction with
ACE2 promoting high infectivity. Comput. Struct. Biotechnol. J. 2020,
18, 3402−3414.

(493) Muhseen, Z. T.; Kadhim, S.; Yahiya, Y. I.; Alatawi, E. A.; Aba
Alkhayl, F. F.; Almatroudi, A. Insights into the Binding of Receptor-
Binding Domain (RBD) of SARS-CoV-2 Wild Type and B. 1.620
Variant with hACE2 Using Molecular Docking and Simulation
Approaches. Biology 2021, 10, 1310.
(494) Istifli, E. S.; Netz, P. A.; Sihoglu Tepe, A.; Sarikurkcu, C.;
Tepe, B. Understanding the molecular interaction of SARS-CoV-2
spike mutants with ACE2 (angiotensin converting enzyme 2). J.
Biomol. Struct 2021, 1−12.
(495) Khan, A.; Hussain, S.; Ahmad, S.; Suleman, M.; Bukhari, I.;
Khan, T.; Rashid, F.; Azad, A. K.; Waseem, M.; Khan, W.; et al.
Computational modelling of potentially emerging SARS-CoV-2 spike
protein RBDs mutations with higher binding affinity towards ACE2:
A structural modelling study. Comput. Biol. Med. 2022, 141, 105163.
(496) Kullappan, M.; Mary, U.; Ambrose, J. M.; Veeraraghavan, V.
P.; Surapaneni, K. M. Elucidating the role of N440K mutation in
SARS-CoV-2 spike−ACE-2 binding affinity and COVID-19 severity
by virtual screening, molecular docking and dynamics approach. J.
Biomol. Struct 2021, 1−18.
(497) Fossum, C. J.; Laatsch, B. F.; Lowater, H. R.; Narkiewicz-
Jodko, A. W.; Lonzarich, L.; Hati, S.; Bhattacharyya, S. Pre-Existing
Oxidative Stress Creates a Docking-Ready Conformation of the
SARS-CoV-2 Receptor-Binding Domain. ACS Bio & Med. Chem. Au
2022, 2, 84−93.
(498) Ghasemitarei, M.; Privat-Maldonado, A.; Yusupov, M.;
Rahnama, S.; Bogaerts, A.; Ejtehadi, M. R. Effect of Cysteine
Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its
Interaction with Two Cell Receptors: Insights from Atomistic
Simulations. J. Chem. Inf. Model. 2022, 62, 129.
(499) Piplani, S.; Singh, P. K.; Winkler, D. A.; Petrovsky, N. In silico
comparison of SARS-CoV-2 spike protein-ACE2 binding affinities
across species and implications for virus origin. Sci. Rep. 2021, 11, 1−
13.
(500) Chen, P.; Wang, J.; Xu, X.; Li, Y.; Zhu, Y.; Li, X.; Li, M.; Hao,
P. Molecular dynamic simulation analysis of SARS-CoV-2 spike
mutations and evaluation of ACE2 from pets and wild animals for
infection risk. Comput. Biol. Chem. 2022, 96, 107613.
(501) Wu, L.; Zhou, L.; Mo, M.; Liu, T.; Wu, C.; Gong, C.; Lu, K.;
Gong, L.; Zhu, W.; Xu, Z. SARS-CoV-2 Omicron RBD shows weaker
binding affinity than the currently dominant Delta variant to human
ACE2. Signal Transduct. Target. Ther. 2022, 7, 1−3.
(502) De Oliveira, O. V.; Rocha, G. B.; Paluch, A. S.; Costa, L. T.
Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein
from molecular modeling and virtual screening. J. Biomol. Struct. Dyn.
2021, 39, 3924−3933.
(503) Romeo, A.; IaCoVelli, F.; Falconi, M. Targeting the SARS-
CoV-2 spike glycoprotein prefusion conformation: virtual screening
and molecular dynamics simulations applied to the identification of
potential fusion inhibitors. Virus Res. 2020, 286, 198068.
(504) Padhi, A. K.; Seal, A.; Khan, J. M.; Ahamed, M.; Tripathi, T.
Unraveling the mechanism of Arbidol binding and inhibition of
SARS-CoV-2: Insights from atomistic simulations. Eur. J. Pharmacol.
2021, 894, 173836.
(505) Sethi, A.; Sanam, S.; Munagalasetty, S.; Jayanthi, S.; Alvala, M.
Understanding the role of galectin inhibitors as potential candidates
for SARS-CoV-2 spike protein: in silico studies. RSC Adv. 2020, 10,
29873−29884.
(506) Rane, J. S.; Pandey, P.; Chatterjee, A.; Khan, R.; Kumar, A.;
Prakash, A.; Ray, S. Targeting virus−host interaction by novel
pyrimidine derivative: an in silico approach towards discovery of
potential drug against COVID-19. J. Biomol. Struct. Dyn. 2021, 39,
5768−5778.
(507) Singh, R.; Bhardwaj, V. K.; Sharma, J.; Kumar, D.; Purohit, R.
Identification of potential plant bioactive as SARS-CoV-2 Spike
protein and human ACE2 fusion inhibitors. Comput. Biol. Med. 2021,
136, 104631.
(508) Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.;
Cao, P.; Lu, J. The MERS-CoV receptor DPP4 as a candidate binding
target of the SARS-CoV-2 spike. Iscience 2020, 23, 101160.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11346

https://doi.org/10.1093/bib/bbab045
https://doi.org/10.1080/07420528.2021.1903027
https://doi.org/10.1080/07420528.2021.1903027
https://doi.org/10.1080/07420528.2021.1903027
https://doi.org/10.1080/07391102.2020.1798285
https://doi.org/10.1080/07391102.2020.1798285
https://doi.org/10.1080/07391102.2020.1798285
https://doi.org/10.1080/07391102.2020.1790038
https://doi.org/10.1080/07391102.2020.1790038
https://doi.org/10.1080/07391102.2020.1790038
https://doi.org/10.1080/07391102.2020.1775704
https://doi.org/10.1080/07391102.2020.1775704
https://doi.org/10.1080/07391102.2020.1775704
https://doi.org/10.1080/07391102.2020.1757510
https://doi.org/10.1080/07391102.2021.1897680
https://doi.org/10.1080/07391102.2021.1897680
https://doi.org/10.1080/07391102.2021.1897680
https://doi.org/10.1080/07391102.2020.1800514
https://doi.org/10.1080/07391102.2020.1800514
https://doi.org/10.1080/07391102.2020.1800514
https://doi.org/10.1002/jcb.29909
https://doi.org/10.1002/jcb.29909
https://doi.org/10.3390/ijms21113793
https://doi.org/10.3390/ijms21113793
https://doi.org/10.3390/ijms21113793
https://doi.org/10.1021/acschemneuro.0c00373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschemneuro.0c00373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschemneuro.0c00373?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/v12040428
https://doi.org/10.3390/v12040428
https://doi.org/10.1002/chem.202104215
https://doi.org/10.1002/chem.202104215
https://doi.org/10.1038/s41598-021-86380-2
https://doi.org/10.1038/s41598-021-86380-2
https://doi.org/10.1038/s41598-021-86380-2
https://doi.org/10.1021/acs.jpclett.0c01148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01148?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c02125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c02125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c02125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bib/bbab044
https://doi.org/10.1093/bib/bbab044
https://doi.org/10.1093/bib/bbab044
https://doi.org/10.1016/j.csbj.2020.11.002
https://doi.org/10.1016/j.csbj.2020.11.002
https://doi.org/10.1016/j.csbj.2020.11.002
https://doi.org/10.3390/biology10121310
https://doi.org/10.3390/biology10121310
https://doi.org/10.3390/biology10121310
https://doi.org/10.3390/biology10121310
https://doi.org/10.1080/07391102.2021.1975569
https://doi.org/10.1080/07391102.2021.1975569
https://doi.org/10.1016/j.compbiomed.2021.105163
https://doi.org/10.1016/j.compbiomed.2021.105163
https://doi.org/10.1016/j.compbiomed.2021.105163
https://doi.org/10.1080/07391102.2021.2014973
https://doi.org/10.1080/07391102.2021.2014973
https://doi.org/10.1080/07391102.2021.2014973
https://doi.org/10.1021/acsbiomedchemau.1c00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomedchemau.1c00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsbiomedchemau.1c00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00853?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00853?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00853?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00853?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41598-021-92388-5
https://doi.org/10.1038/s41598-021-92388-5
https://doi.org/10.1038/s41598-021-92388-5
https://doi.org/10.1016/j.compbiolchem.2021.107613
https://doi.org/10.1016/j.compbiolchem.2021.107613
https://doi.org/10.1016/j.compbiolchem.2021.107613
https://doi.org/10.1038/s41392-021-00863-2
https://doi.org/10.1038/s41392-021-00863-2
https://doi.org/10.1038/s41392-021-00863-2
https://doi.org/10.1080/07391102.2020.1772885
https://doi.org/10.1080/07391102.2020.1772885
https://doi.org/10.1016/j.virusres.2020.198068
https://doi.org/10.1016/j.virusres.2020.198068
https://doi.org/10.1016/j.virusres.2020.198068
https://doi.org/10.1016/j.virusres.2020.198068
https://doi.org/10.1016/j.ejphar.2020.173836
https://doi.org/10.1016/j.ejphar.2020.173836
https://doi.org/10.1039/D0RA04795C
https://doi.org/10.1039/D0RA04795C
https://doi.org/10.1080/07391102.2020.1794969
https://doi.org/10.1080/07391102.2020.1794969
https://doi.org/10.1080/07391102.2020.1794969
https://doi.org/10.1016/j.compbiomed.2021.104631
https://doi.org/10.1016/j.compbiomed.2021.104631
https://doi.org/10.1016/j.isci.2020.101160
https://doi.org/10.1016/j.isci.2020.101160
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(509) Pandey, P.; Rane, J. S.; Chatterjee, A.; Kumar, A.; Khan, R.;
Prakash, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-
19 with naturally occurring phytochemicals: an in silico study for drug
development. J. Biomol. Struct. Dyn. 2021, 39, 6306−6316.
(510) Umashankar, V.; Deshpande, S. H.; Hegde, H. V.; Singh, I.;
Chattopadhyay, D. Phytochemical moieties from Indian traditional
medicine for targeting dual hotspots on SARS-CoV-2 spike protein:
an integrative in-silico approach. Front. Med. 2021, 8, 545.
(511) Patel, C. N.; Goswami, D.; Sivakumar, P. K.; Pandya, H. A.
Repurposing of anticancer phytochemicals for identifying potential
fusion inhibitor for SARS-CoV-2 using molecular docking and
molecular dynamics (MD) simulations. J. Biomol. Struct 2021, 1−18.
(512) Alvarado, W.; Perez-Lemus, G. R.; Menéndez, C. A.; Byléhn,
F.; de Pablo, J. J. Molecular characterization of COVID-19
therapeutics: luteolin as an allosteric modulator of the spike protein
of SARS-CoV-2. MSDE 2022, 7, 58.
(513) Patel, C. N.; Goswami, D.; Jaiswal, D. G.; Parmar, R. M.;
Solanki, H. A.; Pandya, H. A. Pinpointing the potential hits for
hindering interaction of SARS-CoV-2 S-protein with ACE2 from the
pool of antiviral phytochemicals utilizing molecular docking and
molecular dynamics (MD) simulations. J. Mol. Graph. Model. 2021,
105, 107874.
(514) Ruan, Z.; Liu, C.; Guo, Y.; He, Z.; Huang, X.; Jia, X.; Yang, T.
SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors
targeting RNA-dependent RNA polymerase activity (NSP12). J. Med.
Virol 2021, 93, 389−400.
(515) Doharey, P. K.; Singh, V.; Gedda, M. R.; Sahoo, A. K.;
Varadwaj, P. K.; Sharma, B. In silico study indicates antimalarials as
direct inhibitors of SARS-CoV-2-RNA dependent RNA polymerase. J.
Biomol. Struct 2021, 1−18.
(516) Pirzada, R. H.; Haseeb, M.; Batool, M.; Kim, M.; Choi, S.
Remdesivir and Ledipasvir among the FDA-Approved Antiviral Drugs
Have Potential to Inhibit SARS-CoV-2 Replication. Cells 2021, 10,
1052.
(517) Arba, M.; Wahyudi, S. T.; Brunt, D. J.; Paradis, N.; Wu, C.
Mechanistic insight on the remdesivir binding to RNA-Dependent
RNA polymerase (RdRp) of SARS-Cov-2. Comput. Biol. Med. 2021,
129, 104156.
(518) Khan, A.; Khan, M.; Saleem, S.; Babar, Z.; Ali, A.; Khan, A. A.;
Sardar, Z.; Hamayun, F.; Ali, S. S.; Wei, D.-Q. Phylogenetic analysis
and structural perspectives of RNA-dependent RNA-polymerase
inhibition from SARS-CoV-2 with natural products. Interdiscip. Sci.
2020, 12, 335−348.
(519) Singh, S.; Sk, M. F.; Sonawane, A.; Kar, P.; Sadhukhan, S.
Plant-derived natural polyphenols as potential antiviral drugs against
SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhib-
ition: An in-silico analysis. J. Biomol. Struct. Dyn. 2021, 39, 6249.
(520) Ali, H. S. M.; Altayb, H. N.; Firoz, A.; Bayoumi, A. A. M.; El
Omri, A.; Chaieb, K. Inhibitory activity of marine sponge metabolites
on SARS-CoV-2 RNA dependent polymerase: virtual screening and
molecular dynamics simulation. J. Biomol. Struct 2021, 1−12.
(521) Sonousi, A.; Mahran, H. A.; Ibrahim, I. M.; Ibrahim, M. N.;
Elfiky, A. A.; Elshemey, W. M. Novel adenosine derivatives against
SARS-CoV-2 RNA-dependent RNA polymerase: an in silico
perspective. Pharmacol. Rep. 2021, 73, 1754.
(522) Jena, N.; Pant, S.; Srivastava, H. K. Artificially expanded
genetic information systems (AEGISs) as potent inhibitors of the
RNA-dependent RNA polymerase of the SARS-CoV-2. J. Biomol.
Struct 2021, 1−17.
(523) Pant, S.; Jena, N. Inhibition of the RNA-dependent RNA
Polymerase of the SARS-CoV-2 by Short Peptide Inhibitors. Eur. J.
Pharm. Sci. 2021, 167, 106012.
(524) Singh, R.; Bhardwaj, V. K.; Purohit, R. Potential of turmeric-
derived compounds against RNA-dependent RNA polymerase of
SARS-CoV-2: An in-silico approach. Comput. Biol. Med. 2021, 139,
104965.
(525) Sanachai, K.; Mahalapbutr, P.; Sanghiran Lee, V.;
Rungrotmongkol, T.; Hannongbua, S. In Silico Elucidation of Potent

Inhibitors and Rational Drug Design against SARS-CoV-2 Papain-like
Protease. J. Phys. Chem. B 2021, 125, 13644−13656.
(526) Bhardwaj, V. K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit,
R.; Kumar, S. Bioactive molecules of Tea as potential inhibitors for
RNA-dependent RNA polymerase of SARS-CoV-2. Front. Med. 2021,
8, 645.
(527) Koulgi, S.; Jani, V.; VN, M. U.; Sonavane, U.; Joshi, R.
Structural insight into the binding interactions of NTPs and
nucleotide analogues to RNA dependent RNA polymerase of SARS-
CoV-2. J. Biomol. Struct 2021, 1−15.
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Computational Simulations on the Binding and Reactivity of a Nitrile
Inhibitor of SARS-CoV-2 Main Protease. ChemComm 2021, 57, 9096.
(647) Ramos-Guzmán, C. A.; Ruiz-Pernía, J. J.; Tuñón, I. A
microscopic description of SARS-CoV-2 main protease inhibition
with Michael acceptors. Strategies for improving inhibitor design.
Chem. Sci. 2021, 12, 3489−3496.
(648) Arafet, K.; Serrano-Aparicio, N.; Lodola, A.; Mulholland, A. J.;
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Potapenko, A.; et al. Highly accurate protein structure prediction
with AlphaFold. Nature 2021, 596, 583−589.
(800) Robertson, A. J.; Courtney, J. M.; Shen, Y.; Ying, J.; Bax, A.
Concordance of X-ray and AlphaFold2Models of SARS-CoV-2 Main

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11354

https://doi.org/10.1021/acs.jcim.8b00697?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00697?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00697?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jmb.2021.167155
https://doi.org/10.1016/j.jmb.2021.167155
https://doi.org/10.1021/acsinfecdis.1c00557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsinfecdis.1c00557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/minf.202000028
https://doi.org/10.1002/minf.202000028
https://doi.org/10.3390/ijms22041573
https://doi.org/10.3390/ijms22041573
https://doi.org/10.3390/ijms22041573
https://doi.org/10.1016/j.csbj.2020.03.025
https://doi.org/10.1016/j.csbj.2020.03.025
https://doi.org/10.1016/j.csbj.2020.03.025
https://doi.org/10.1016/j.csbj.2020.03.025
https://doi.org/10.26599/BDMA.2020.9020007
https://doi.org/10.26599/BDMA.2020.9020007
https://doi.org/10.2139/ssrn.3561442
https://doi.org/10.2139/ssrn.3561442
https://doi.org/10.2139/ssrn.3561442?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.2139/ssrn.3561442?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c04472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c04472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.0c04472?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.molstruc.2021.132041
https://doi.org/10.1016/j.molstruc.2021.132041
https://doi.org/10.1016/j.molstruc.2021.132041
https://doi.org/10.1073/pnas.2105070118
https://doi.org/10.1073/pnas.2105070118
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1038/s41586-020-2180-5
https://doi.org/10.1038/s41586-020-2180-5
https://doi.org/10.1038/s41467-020-20602-5
https://doi.org/10.1038/s41467-020-20602-5
https://doi.org/10.1038/s41467-020-20602-5
https://doi.org/10.1038/s41586-020-2381-y
https://doi.org/10.1038/s41586-020-2381-y
https://doi.org/10.1038/s41586-020-2852-1
https://doi.org/10.1038/s41586-020-2852-1
https://doi.org/10.1126/science.abd0827
https://doi.org/10.1126/science.abd0827
https://doi.org/10.1126/science.abd0827
https://doi.org/10.1126/scitranslmed.abf1906
https://doi.org/10.1126/scitranslmed.abf1906
https://doi.org/10.1126/scitranslmed.abf1906
https://doi.org/10.1038/s41586-020-2349-y
https://doi.org/10.1038/s41586-020-2349-y
https://doi.org/10.1038/s41564-021-00972-2
https://doi.org/10.1038/s41564-021-00972-2
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s42256-019-0086-4
https://zhanglab.ccmb.med.umich.edu/COVID-19/
https://doi.org/10.1038/s41598-021-81749-9
https://doi.org/10.1038/s41598-021-81749-9
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1016/j.jbi.2021.103821
https://doi.org/10.1016/j.jbi.2021.103821
https://doi.org/10.1016/j.jbi.2021.103821
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1101/2020.01.30.927889
https://doi.org/10.1101/2020.01.30.927889
https://doi.org/10.1101/2020.01.30.927889?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C8SC00148K
https://doi.org/10.1039/C8SC00148K
https://doi.org/10.1039/C8SC00148K
https://doi.org/10.1126/science.abd7331
https://doi.org/10.1126/science.abd7331
https://doi.org/10.1021/acs.jcim.0c00599?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00599?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1021/jacs.1c10588?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Protease with Residual Dipolar Couplings Measured in Solution. J.
Am. Chem. Soc. 2021, 143, 19306−19310.
(801) Flower, T. G.; Hurley, J. H. Crystallographic molecular
replacement using an in silico-generated search model of SARS-CoV-
2 ORF8. Protein Sci. 2021, 30, 728−734.
(802) Kryshtafovych, A.; Moult, J.; Billings, W. M.; Della Corte, D.;
Fidelis, K.; Kwon, S.; Olechnovic,̌ K.; Seok, C.; Venclovas, Č.; Won,
J.; et al. Modeling SARS-CoV-2 proteins in the CASP-commons
experiment. Proteins 2021, 89, 1987−1996.
(803) Mount, D. Bioinformatics: Sequence and Genome Analysis; Cold
Spring Harbor Laboratory Press: New York, 2004; 692 pp. ISBN 0-
87969-712-1. Rich, D. H. Evaluation of Enzyme Inhibitors in Drug
Discovery: A Guide for Medicinal Chemists and Pharmacologists.
Clin. Chem. 2005, 51, 2219−2219.
(804) Wilbur, W. J.; Lipman, D. J. Rapid similarity searches of
nucleic acid and protein data banks. Proc. Natl. Acad. Sci. U.S.A. 1983,
80, 726−730.
(805) Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D.
J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403−410.
(806) Ye, J.; McGinnis, S.; Madden, T. L. BLAST: improvements for
better sequence analysis. Nucleic Acids Res. 2006, 34, W6−W9.
(807) Mount, D. W. Using the basic local alignment search tool
(BLAST). Cold Spring Harb. Protoc. 2007, 2007, pdb.top17.
(808) Zhang, T.; Wu, Q.; Zhang, Z. Probable pangolin origin of
SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol.
2020, 30, 1578.
(809) Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.-J.; Li,
N.; Guo, Y.; Li, X.; Shen, X.; et al. Isolation of SARS-CoV-2-related
coronavirus from Malayan pangolins. Nature 2020, 583, 286.
(810) Wang, H.; Pipes, L.; Nielsen, R. Synonymous mutations and
the molecular evolution of SARS-Cov-2 origins. Virus Evol. 2021, 7,
veaa098.
(811) La Rosa, G.; Mancini, P.; Ferraro, G. B.; Veneri, C.; Iaconelli,
M.; Bonadonna, L.; Lucentini, L.; Suffredini, E. SARS-CoV-2 has been
circulating in northern Italy since December 2019: Evidence from
environmental monitoring. Sci. Total Environ. 2021, 750, 141711.
(812) Sah, R.; Rodriguez-Morales, A. J.; Jha, R.; Chu, D. K.; Gu, H.;
Peiris, M.; Bastola, A.; Lal, B. K.; Ojha, H. C.; Rabaan, A. A.; et al.
Complete genome sequence of a 2019 novel coronavirus (SARS-
CoV-2) strain isolated in Nepal. Microbiol. Resour. Announc. 2020, 9,
e00169−20.
(813) La Rosa, G.; Iaconelli, M.; Mancini, P.; Ferraro, G. B.; Veneri,
C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of
SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ.
2020, 736, 139652.
(814) Westhaus, S.; Weber, F.-A.; Schiwy, S.; Linnemann, V.;
Brinkmann, M.; Widera, M.; Greve, C.; Janke, A.; Hollert, H.;
Wintgens, T.; et al. Detection of SARS-CoV-2 in raw and treated
wastewater in Germany−suitability for COVID-19 surveillance and
potential transmission risks. Sci. Total Environ. 2021, 751, 141750.
(815) Coronaviridae Study Group of the International Committee
on Taxonomy of Viruses. The species Severe acute respiratory
syndrome-related coronavirus: classifying 2019-nCoV and naming it
SARS-CoV-2. Nat. Microbiol. 2020, 5, 536.
(816) Higgins, D. G.; Sharp, P. M. CLUSTAL: a package for
performing multiple sequence alignment on a microcomputer. Gene
1988, 73, 237−244.
(817) Edgar, R. C. MUSCLE: a multiple sequence alignment
method with reduced time and space complexity. BMC Bioinform
2004, 5, 113.
(818) Katoh, K.; Asimenos, G.; Toh, H. Bioinformatics for DNA
sequence analysis; Springer: 2009; pp 39−64.
(819) Katoh, K.; Misawa, K.; Kuma, K.-i.; Miyata, T. MAFFT: a
novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Res. 2002, 30, 3059−3066.
(820) Thompson, J. D.; Higgins, D. G.; Gibson, T. J. CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res. 1994, 22, 4673−4680.

(821) Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.;
McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm,
A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. bioinformatics
2007, 23, 2947−2948.
(822) Saitou, N.; Nei, M. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4,
406−425.
(823) Blackshields, G.; Sievers, F.; Shi, W.; Wilm, A.; Higgins, D. G.
Sequence embedding for fast construction of guide trees for multiple
sequence alignment. Algorithms Mol. Biol. 2010, 5, 21.
(824) Söding, J. Protein homology detection by HMM−HMM
comparison. Bioinformatics 2005, 21, 951−960.
(825) Edgar, R. C. MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Res. 2004, 32,
1792−1797.
(826) Dallavilla, T.; Bertelli, M.; Morresi, A.; Bushati, V.; Stuppia, L.;
Beccari, T.; Chiurazzi, P.; Marceddu, G. Bioinformatic analysis
indicates that SARS-CoV-2 is unrelated to known artificial
coronaviruses. Eur. Rev. Med. Pharmacol Sci. 2020, 24, 4558−4564.
(827) Trigueiro-Louro, J.; Correia, V.; Figueiredo-Nunes, I.; Gíria,
M.; Rebelo-de-Andrade, H. Unlocking COVID therapeutic targets: A
structure-based rationale against SARS-CoV-2, SARS-CoV and
MERS-CoV Spike. Comput. Struct. Biotechnol. J. 2020, 18, 2117.
(828) Li, T.; Liu, D.; Yang, Y.; Guo, J.; Feng, Y.; Zhang, X.; Cheng,
S.; Feng, J. Phylogenetic supertree reveals detailed evolution of SARS-
CoV-2. Sci. Rep. 2020, 10, 1−9.
(829) Sallam, M.; Ababneh, N. A.; Dababseh, D.; Bakri, F. G.;
Mahafzah, A. Temporal increase in D614G mutation of SARS-CoV-2
in the Middle East and North Africa. Heliyon 2021, 7, No. e06035.
(830) Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M. C. SWISS-
MODEL: an automated protein homology-modeling server. Nucleic
Acids Res. 2003, 31, 3381−3385.
(831) Chothia, C.; Lesk, A. M. The relation between the divergence
of sequence and structure in proteins. EMBO J. 1986, 5, 823−826.
(832) Abdelrheem, D. A.; Ahmed, S. A.; Abd El-Mageed, H.;
Mohamed, H. S.; Rahman, A. A.; Elsayed, K. N.; Ahmed, S. A. The
inhibitory effect of some natural bioactive compounds against SARS-
CoV-2 main protease: insights from molecular docking analysis and
molecular dynamic simulation. J. Environ. Sci. Health A 2020, 55,
1373−1386.
(833) Jiménez-Alberto, A.; Ribas-Aparicio, R. M.; Aparicio-Ozores,
G.; Castelán-Vega, J. A. Virtual screening of approved drugs as
potential SARS-CoV-2 main protease inhibitors. Comput. Biol. Chem.
2020, 88, 107325.
(834) Calligari, P.; Bobone, S.; Ricci, G.; Bocedi, A. Molecular
Investigation of SARS−CoV-2 Proteins and Their Interactions with
Antiviral Drugs. Viruses 2020, 12, 445.
(835) Wang, Q.; Zhao, Y.; Chen, X.; Hong, A. Virtual screening of
approved clinic drugs with main protease (3CLpro) reveals potential
inhibitory effects on SARS-CoV-2. J. Biomol. Struct. Dyn. 2022, 40,
685−695.
(836) Milenkovic,́ D. A.; Dimic,́ D. S.; Avdovic,́ E. H.; Markovic,́ Z.
S. Several coumarin derivatives and their Pd (II) complexes as
potential inhibitors of the main protease of SARS-CoV-2, an in silico
approach. RSC Adv. 2020, 10, 35099−35108.
(837) Shanker, A. K.; Bhanu, D.; Alluri, A.; Gupta, S. Whole-genome
sequence analysis and homology modelling of the main protease and
non-structural protein 3 of SARS-CoV-2 reveal an aza-peptide and a
lead inhibitor with possible antiviral properties. New J. Chem. 2020,
44, 9202−9212.
(838) Khan, R. J.; Jha, R. K.; Amera, G. M.; Jain, M.; Singh, E.;
Pathak, A.; Singh, R. P.; Muthukumaran, J.; Singh, A. K. Targeting
SARS-CoV-2: A systematic drug repurposing approach to identify
promising inhibitors against 3C-like proteinase and 2’-O-ribose
methyltransferase. J. Biomol. Struct 2021, 39, 2679−2692.
(839) Pach, S.; Nguyen, T. N.; Trimpert, J.; Kunec, D.; Osterrieder,
N.; Wolber, G. ACE2-Variants Indicate Potential SARS-CoV-2-
Susceptibility in Animals: A Molecular Dynamics Study. Mol. Inform.
2021, 40, 2100031.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11355

https://doi.org/10.1021/jacs.1c10588?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pro.4050
https://doi.org/10.1002/pro.4050
https://doi.org/10.1002/pro.4050
https://doi.org/10.1002/prot.26231
https://doi.org/10.1002/prot.26231
https://doi.org/10.1373/clinchem.2005.051946
https://doi.org/10.1373/clinchem.2005.051946
https://doi.org/10.1073/pnas.80.3.726
https://doi.org/10.1073/pnas.80.3.726
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/gkl164
https://doi.org/10.1093/nar/gkl164
https://doi.org/10.1101/pdb.top17
https://doi.org/10.1101/pdb.top17
https://doi.org/10.1016/j.cub.2020.03.063
https://doi.org/10.1016/j.cub.2020.03.063
https://doi.org/10.1038/s41586-020-2313-x
https://doi.org/10.1038/s41586-020-2313-x
https://doi.org/10.1093/ve/veaa098
https://doi.org/10.1093/ve/veaa098
https://doi.org/10.1016/j.scitotenv.2020.141711
https://doi.org/10.1016/j.scitotenv.2020.141711
https://doi.org/10.1016/j.scitotenv.2020.141711
https://doi.org/10.1128/MRA.00169-20
https://doi.org/10.1128/MRA.00169-20
https://doi.org/10.1016/j.scitotenv.2020.139652
https://doi.org/10.1016/j.scitotenv.2020.139652
https://doi.org/10.1016/j.scitotenv.2020.141750
https://doi.org/10.1016/j.scitotenv.2020.141750
https://doi.org/10.1016/j.scitotenv.2020.141750
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1016/0378-1119(88)90330-7
https://doi.org/10.1016/0378-1119(88)90330-7
https://doi.org/10.1186/1471-2105-5-113
https://doi.org/10.1186/1471-2105-5-113
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/bioinformatics/btm404
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1186/1748-7188-5-21
https://doi.org/10.1186/1748-7188-5-21
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/bioinformatics/bti125
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.26355/eurrev_202004_21041
https://doi.org/10.26355/eurrev_202004_21041
https://doi.org/10.26355/eurrev_202004_21041
https://doi.org/10.1016/j.csbj.2020.07.017
https://doi.org/10.1016/j.csbj.2020.07.017
https://doi.org/10.1016/j.csbj.2020.07.017
https://doi.org/10.1038/s41598-020-79484-8
https://doi.org/10.1038/s41598-020-79484-8
https://doi.org/10.1016/j.heliyon.2021.e06035
https://doi.org/10.1016/j.heliyon.2021.e06035
https://doi.org/10.1093/nar/gkg520
https://doi.org/10.1093/nar/gkg520
https://doi.org/10.1002/j.1460-2075.1986.tb04288.x
https://doi.org/10.1002/j.1460-2075.1986.tb04288.x
https://doi.org/10.1080/10934529.2020.1826192
https://doi.org/10.1080/10934529.2020.1826192
https://doi.org/10.1080/10934529.2020.1826192
https://doi.org/10.1080/10934529.2020.1826192
https://doi.org/10.1016/j.compbiolchem.2020.107325
https://doi.org/10.1016/j.compbiolchem.2020.107325
https://doi.org/10.3390/v12040445
https://doi.org/10.3390/v12040445
https://doi.org/10.3390/v12040445
https://doi.org/10.1080/07391102.2020.1817786
https://doi.org/10.1080/07391102.2020.1817786
https://doi.org/10.1080/07391102.2020.1817786
https://doi.org/10.1039/D0RA07062A
https://doi.org/10.1039/D0RA07062A
https://doi.org/10.1039/D0RA07062A
https://doi.org/10.1039/D0NJ00974A
https://doi.org/10.1039/D0NJ00974A
https://doi.org/10.1039/D0NJ00974A
https://doi.org/10.1039/D0NJ00974A
https://doi.org/10.1080/07391102.2020.1753577
https://doi.org/10.1080/07391102.2020.1753577
https://doi.org/10.1080/07391102.2020.1753577
https://doi.org/10.1080/07391102.2020.1753577
https://doi.org/10.1002/minf.202100031
https://doi.org/10.1002/minf.202100031
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(840) Aatif, M.; Muteeb, G.; Alsultan, A.; Alshoaibi, A.; Khelif, B. Y.
Dieckol and Its Derivatives as Potential Inhibitors of SARS-CoV-2
Spike Protein (UK Strain: VUI 202012/01): A Computational Study.
Mar. Drugs 2021, 19, 242.
(841) Parvez, M. S. A.; Rahman, M. M.; Morshed, M. N.; Rahman,
D.; Anwar, S.; Hosen, M. J. Genetic analysis of SARS-CoV-2 isolates
collected from Bangladesh: Insights into the origin, mutational
spectrum and possible pathomechanism. Comput. Biol. Chem. 2021,
90, 107413.
(842) Hall, D. C., Jr; Ji, H.-F. A search for medications to treat
COVID-19 via in silico molecular docking models of the SARS-CoV-2
spike glycoprotein and 3CL protease. Travel Med. Infect Dis 2020, 35,
101646.
(843) Morsy, S.; Morsy, A. Epitope mimicry analysis of SARS-COV-
2 surface proteins and human lung proteins. J. Mol. Graph. Model.
2021, 105, 107836.
(844) Luan, J.; Lu, Y.; Jin, X.; Zhang, L. Spike protein recognition of
mammalian ACE2 predicts the host range and an optimized ACE2 for
SARS-CoV-2 infection. Biochem. Biophys. Res. Commun. 2020, 526,
165−169.
(845) Hussain, M.; Jabeen, N.; Raza, F.; Shabbir, S.; Baig, A. A.;
Amanullah, A.; Aziz, B. Structural variations in human ACE2 may
influence its binding with SARS-CoV-2 spike protein. J. Med. Virol.
2020, 92, 1580−1586.
(846) Sigrist, C. J.; Bridge, A.; Le Mercier, P. A potential role for
integrins in host cell entry by SARS-CoV-2. Antivir. Res. 2020, 177,
104759.
(847) Baig, A. M.; Khaleeq, A.; Syeda, H. Elucidation of cellular
targets and exploitation of the receptor-binding domain of SARS-
CoV-2 for vaccine and monoclonal antibody synthesis. J. Med. Virol.
2020, 92, 2792−2803.
(848) Jaimes, J. A.; André, N. M.; Chappie, J. S.; Millet, J. K.;
Whittaker, G. R. Phylogenetic analysis and structural modeling of
SARS-CoV-2 spike protein reveals an evolutionary distinct and
proteolytically sensitive activation loop. J. Mol. Biol. 2020, 432, 3309−
3325.
(849) Ling, R.; Dai, Y.; Huang, B.; Huang, W.; Yu, J.; Lu, X.; Jiang,
Y. In silico design of antiviral peptides targeting the spike protein of
SARS-CoV-2. Peptides 2020, 130, 170328.
(850) Singh, N.; Decroly, E.; Khatib, A.-M.; Villoutreix, B. O.
Structure-based drug repositioning over the human TMPRSS2
protease domain: search for chemical probes able to repress SARS-
CoV-2 Spike protein cleavages. Eur. J. Pharm. Sci. 2020, 153, 105495.
(851) Choudhary, S.; Malik, Y. S.; Tomar, S. Identification of SARS-
CoV-2 cell entry inhibitors by drug repurposing using in silico
structure-based virtual screening approach. Front. Immunol. 2020, 11,
1664.
(852) Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y.; Wang, P.;
Liu, D.; Yang, J.; Holmes, E. C.; et al. A novel bat coronavirus closely
related to SARS-CoV-2 contains natural insertions at the S1/S2
cleavage site of the spike protein. Curr. Biol. 2020, 30, 2196−2203.
(853) Kharisma, V. D.; Ansori, A. N. M. Construction of epitope-
based peptide vaccine against SARS-CoV-2: Immunoinformatics
study. J. Pure Appl. Microbiol 2020, 14, 999−1005.
(854) Shanmugarajan, D.; Prabitha, P.; Kumar, B. P.; Suresh, B.
Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors:
computational modelling, simulations, and ADMET studies to explore
curcuminoids against novel SARS-CoV-2 targets. RSC Adv. 2020, 10,
31385−31399.
(855) Feng, S.; Luan, X.; Wang, Y.; Wang, H.; Zhang, Z.; Wang, Y.;
Tian, Z.; Liu, M.; Xiao, Y.; Zhao, Y.; et al. Eltrombopag is a potential
target for drug intervention in SARS-CoV-2 spike protein. Infect.
Genet. Evol. 2020, 85, 104419.
(856) Li, W. Delving deep into the structural aspects of a furin
cleavage site inserted into the spike protein of SARS-CoV-2: a
structural biophysical perspective. Biophys. Chem. 2020, 264, 106420.
(857) Park, T.; Lee, S.-Y.; Kim, S.; Kim, M. J.; Kim, H. G.; Jun, S.;
Kim, S. I.; Kim, B. T.; Park, E. C.; Park, D. Spike protein binding

prediction with neutralizing antibodies of SARS-CoV-2. BioRxiv 2020,
DOI: 10.1101/2020.02.22.951178.
(858) Lupala, C. S.; Li, X.; Lei, J.; Chen, H.; Qi, J.; Liu, H.; Su, X.-d.
Computational simulations reveal the binding dynamics between
human ACE2 and the receptor binding domain of SARS-CoV-2 spike
protein. Quant. Biol. 2021, 9, 61−72.
(859) Parray, H. A.; Chiranjivi, A. K.; Asthana, S.; Yadav, N.;
Shrivastava, T.; Mani, S.; Sharma, C.; Vishwakarma, P.; Das, S.;
Pindari, K.; et al. Identification of an anti−SARS−CoV-2 receptor-
binding domain−directed human monoclonal antibody from a naiv̈e
semisynthetic library. J. Biol. Chem. 2020, 295, 12814−12821.
(860) Kumar, S.; Maurya, V. K.; Prasad, A. K.; Bhatt, M. L.; Saxena,
S. K. Structural, glycosylation and antigenic variation between 2019
novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV).
Virusdisease 2020, 31, 13−21.
(861) Su, Q.-d.; Yi, Y.; Zou, Y.-n.; Jia, Z.-y.; Qiu, F.; Wang, F.; Yin,
W.-j.; Zhou, W.-t.; Zhang, S.; Yu, P.-c.; et al. The biological
characteristics of SARS-CoV-2 spike protein Pro330-Leu650. Vaccine
2020, 38, 5071−5075.
(862) Arya, R.; Das, A.; Prashar, V.; Kumar, M. Potential inhibitors
against papain-like protease of novel coronavirus (SARS-CoV-2) from
FDA approved drugs. ChemRxiv 2020, DOI: 10.26434/chem-
rxiv.11860011.v2.
(863) Zhang, L.; Zhou, R. Structural basis of the potential binding
mechanism of remdesivir to SARS-CoV-2 RNA-dependent RNA
polymerase. J. Phys. Chem. B 2020, 124, 6955−6962.
(864) Neogi, U.; Hill, K. J.; Ambikan, A. T.; Heng, X.; Quinn, T. P.;
Byrareddy, S. N.; Sönnerborg, A.; Sarafianos, S. G.; Singh, K.
Feasibility of known rna polymerase inhibitors as anti-SARS-CoV-2
drugs. Pathogens 2020, 9, 320.
(865) Hu, F.; Jiang, J.; Yin, P. Prediction of potential commercially
inhibitors against SARS-CoV-2 by multi-task deep model. arXiv 2020,
2003.00728.
(866) De Maio, F.; Cascio, E. L.; Babini, G.; Sali, M.; Della Longa,
S.; Tilocca, B.; Roncada, P.; ArCoVito, A.; Sanguinetti, M.; Scambia,
G.; et al. Improved binding of SARS-CoV-2 Envelope protein to tight
junction-associated PALS1 could play a key role in COVID-19
pathogenesis. Microbes Infect 2020, 22, 592−597.
(867) Sarkar, M.; Saha, S. Structural insight into the role of novel
SARS-CoV-2 E protein: A potential target for vaccine development
and other therapeutic strategies. PloS one 2020, 15, No. e0237300.
(868) Oany, A. R.; Mia, M.; Pervin, T.; Junaid, M.; Hosen, S. Z.;
Moni, M. A. Design of novel viral attachment inhibitors of the spike
glycoprotein (S) of severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) through virtual screening and dynamics. Int. J.
Antimicrob. Agents 2020, 56, 106177.
(869) Azeez, S. A.; Alhashim, Z. G.; Al Otaibi, W. M.; Alsuwat, H. S.;
Ibrahim, A. M.; Almandil, N. B.; Borgio, J. F. State-of-the-art tools to
identify druggable protein ligand of SARS-CoV-2. Arch Med. Sci.
2020, 16, 497.
(870) Loureiro, C. L.; Jaspe, R. C.; D'Angelo, P.; Zambrano, J. L.;
Rodriguez, L.; Alarcon, V.; Delgado, M.; Aguilar, M.; Garzaro, D.;
Rangel, H. R.; et al. SARS-CoV-2 genetic diversity in Venezuela:
Predominance of D614G variants and analysis of one outbreak. PloS
One 2021, 16, No. e0247196.
(871) Selvaraj, C.; Dinesh, D. C.; Panwar, U.; Abhirami, R.; Boura,
E.; Singh, S. K. Structure-based virtual screening and molecular
dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase
(nsp14) for identifying antiviral inhibitors against COVID-19. J.
Biomol. Struct 2021, 39, 4582−4593.
(872) Siddiqa, M. A.; Rao, D.; Suvarna, G.; Chennamachetty, V.;
Verma, M.; Rao, M. In-Silico Drug Designing of Spike Receptor with
Its ACE2 Receptor and Nsp10/Nsp16 MTase Complex Against
SARS-CoV-2. Int. J. Pept Res. Ther 2021, 27, 1633.
(873) Ngwe Tun, M. M.; Morita, K.; Ishikawa, T.; Urata, S. The
Antiviral Effect of the Chemical Compounds Targeting DED/EDh
Motifs of the Viral Proteins on Lymphocytic Choriomeningitis Virus
and SARS-CoV-2. Viruses 2021, 13, 1220.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00965
Chem. Rev. 2022, 122, 11287−11368

11356

https://doi.org/10.3390/md19050242
https://doi.org/10.3390/md19050242
https://doi.org/10.1016/j.compbiolchem.2020.107413
https://doi.org/10.1016/j.compbiolchem.2020.107413
https://doi.org/10.1016/j.compbiolchem.2020.107413
https://doi.org/10.1016/j.tmaid.2020.101646
https://doi.org/10.1016/j.tmaid.2020.101646
https://doi.org/10.1016/j.tmaid.2020.101646
https://doi.org/10.1016/j.jmgm.2021.107836
https://doi.org/10.1016/j.jmgm.2021.107836
https://doi.org/10.1016/j.bbrc.2020.03.047
https://doi.org/10.1016/j.bbrc.2020.03.047
https://doi.org/10.1016/j.bbrc.2020.03.047
https://doi.org/10.1002/jmv.25832
https://doi.org/10.1002/jmv.25832
https://doi.org/10.1016/j.antiviral.2020.104759
https://doi.org/10.1016/j.antiviral.2020.104759
https://doi.org/10.1002/jmv.26212
https://doi.org/10.1002/jmv.26212
https://doi.org/10.1002/jmv.26212
https://doi.org/10.1016/j.jmb.2020.04.009
https://doi.org/10.1016/j.jmb.2020.04.009
https://doi.org/10.1016/j.jmb.2020.04.009
https://doi.org/10.1016/j.peptides.2020.170328
https://doi.org/10.1016/j.peptides.2020.170328
https://doi.org/10.1016/j.ejps.2020.105495
https://doi.org/10.1016/j.ejps.2020.105495
https://doi.org/10.1016/j.ejps.2020.105495
https://doi.org/10.3389/fimmu.2020.01664
https://doi.org/10.3389/fimmu.2020.01664
https://doi.org/10.3389/fimmu.2020.01664
https://doi.org/10.1016/j.cub.2020.05.023
https://doi.org/10.1016/j.cub.2020.05.023
https://doi.org/10.1016/j.cub.2020.05.023
https://doi.org/10.22207/JPAM.14.SPL1.38
https://doi.org/10.22207/JPAM.14.SPL1.38
https://doi.org/10.22207/JPAM.14.SPL1.38
https://doi.org/10.1039/D0RA03167D
https://doi.org/10.1039/D0RA03167D
https://doi.org/10.1039/D0RA03167D
https://doi.org/10.1016/j.meegid.2020.104419
https://doi.org/10.1016/j.meegid.2020.104419
https://doi.org/10.1016/j.bpc.2020.106420
https://doi.org/10.1016/j.bpc.2020.106420
https://doi.org/10.1016/j.bpc.2020.106420
https://doi.org/10.1101/2020.02.22.951178
https://doi.org/10.1101/2020.02.22.951178
https://doi.org/10.1101/2020.02.22.951178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.15302/J-QB-020-0231
https://doi.org/10.15302/J-QB-020-0231
https://doi.org/10.15302/J-QB-020-0231
https://doi.org/10.1074/jbc.AC120.014918
https://doi.org/10.1074/jbc.AC120.014918
https://doi.org/10.1074/jbc.AC120.014918
https://doi.org/10.1007/s13337-020-00571-5
https://doi.org/10.1007/s13337-020-00571-5
https://doi.org/10.1016/j.vaccine.2020.04.070
https://doi.org/10.1016/j.vaccine.2020.04.070
https://doi.org/10.26434/chemrxiv.11860011.v2
https://doi.org/10.26434/chemrxiv.11860011.v2
https://doi.org/10.26434/chemrxiv.11860011.v2
https://doi.org/10.26434/chemrxiv.11860011.v2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.26434/chemrxiv.11860011.v2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c04198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c04198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c04198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/pathogens9050320
https://doi.org/10.3390/pathogens9050320
https://doi.org/10.48550/arXiv.2003.00728
https://doi.org/10.48550/arXiv.2003.00728
https://doi.org/10.1016/j.micinf.2020.08.006
https://doi.org/10.1016/j.micinf.2020.08.006
https://doi.org/10.1016/j.micinf.2020.08.006
https://doi.org/10.1371/journal.pone.0237300
https://doi.org/10.1371/journal.pone.0237300
https://doi.org/10.1371/journal.pone.0237300
https://doi.org/10.1016/j.ijantimicag.2020.106177
https://doi.org/10.1016/j.ijantimicag.2020.106177
https://doi.org/10.1016/j.ijantimicag.2020.106177
https://doi.org/10.5114/aoms.2020.94046
https://doi.org/10.5114/aoms.2020.94046
https://doi.org/10.1371/journal.pone.0247196
https://doi.org/10.1371/journal.pone.0247196
https://doi.org/10.1080/07391102.2020.1778535
https://doi.org/10.1080/07391102.2020.1778535
https://doi.org/10.1080/07391102.2020.1778535
https://doi.org/10.1007/s10989-021-10196-x
https://doi.org/10.1007/s10989-021-10196-x
https://doi.org/10.1007/s10989-021-10196-x
https://doi.org/10.3390/v13071220
https://doi.org/10.3390/v13071220
https://doi.org/10.3390/v13071220
https://doi.org/10.3390/v13071220
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00965?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(874) Suryawanshi, R. K.; Patil, C. D.; Koganti, R.; Singh, S. K.;
Ames, J. M.; Shukla, D. Heparan Sulfate Binding Cationic Peptides
Restrict SARS-CoV-2 Entry. Pathogens 2021, 10, 803.
(875) Sundar, S.; Thangamani, L.; Piramanayagam, S.; Rahul, C. N.;
Aiswarya, N.; Sekar, K.; Natarajan, J. Screening of FDA-approved
compound library identifies potential small-molecule inhibitors of
SARS-CoV-2 non-structural proteins NSP1, NSP4, NSP6 and NSP13:
molecular modeling and molecular dynamics studies. J. Proteins
Proteom. 2021, 12, 161.
(876) Bhattacharya, R.; Gupta, A. M.; Mitra, S.; Mandal, S.; Biswas,
S. R. A natural food preservative peptide nisin can interact with the
SARS-CoV-2 spike protein receptor human ACE2. Virology 2021,
552, 107−111.
(877) Dong, S.; Sun, J.; Mao, Z.; Wang, L.; Lu, Y.-L.; Li, J. A
guideline for homology modeling of the proteins from newly
discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV).
J. Med. Virol. 2020, 92, 1542−1548.
(878) Martin, W. R.; Cheng, F. Repurposing of FDA-approved
toremifene to treat COVID-19 by blocking the Spike glycoprotein and
NSP14 of SARS-CoV-2. J. Proteome Res. 2020, 19, 4670−4677.
(879) Culletta, G.; Gulotta, M. R.; Perricone, U.; Zappala,̀ M.;
Almerico, A. M.; Tutone, M. Exploring the SARS-CoV-2 Proteome in
the Search of Potential Inhibitors via Structure-Based Pharmacophore
Modeling/Docking Approach. Computation 2020, 8, 77.
(880) Zhou, Z.-J.; Qiu, Y.; Pu, Y.; Huang, X.; Ge, X.-Y. BioAider: An
efficient tool for viral genome analysis and its application in tracing
SARS-CoV-2 transmission. Sustain. Cities Soc. 2020, 63, 102466.
(881) Hijikata, A.; Shionyu-Mitsuyama, C.; Nakae, S.; Shionyu, M.;
Ota, M.; Kanaya, S.; Shirai, T. Knowledge-based structural models of
SARS-CoV-2 proteins and their complexes with potential drugs. FEBS
Lett. 2020, 594, 1960−1973.
(882) Meng, T.; Cao, H.; Zhang, H.; Kang, Z.; Xu, D.; Gong, H.;
Wang, J.; Li, Z.; Cui, X.; Xu, H.; et al. The insert sequence in SARS-
CoV-2 enhances spike protein cleavage by TMPRSS. BioRxiv 2020,
DOI: 10.1101/2020.02.08.926006.
(883) Chen, L.; Zhong, L. Genomics functional analysis and drug
screening of SARS-CoV-2. Genes Dis 2020, 7, 542−550.
(884) Selvaraj, C.; Dinesh, D. C.; Panwar, U.; Abhirami, R.; Boura,
E.; Singh, S. K. Structure-based virtual screening and molecular
dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase
(nsp14) for identifying antiviral inhibitors against COVID-19. J.
Biomol. Struct. Dyn. 2021, 39, 4582.
(885) Benvenuto, D.; Angeletti, S.; Giovanetti, M.; Bianchi, M.;
Pascarella, S.; Cauda, R.; Ciccozzi, M.; Cassone, A. Evolutionary
analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6
(NSP6) could affect viral autophagy. J. Infect. 2020, 81, e24−e27.
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